Advertisement

Signal Transduction and Communication Through Model Membranes in Networks of Coupled Chemical Oscillators

  • Federico Rossi
  • Kristian Torbensen
  • Sandra Ristori
  • Ali Abou-Hassan
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 830)

Abstract

In nature, an important example of chemical communication and synchronicity can be found in cell populations where long-range chemical communication takes place over micrometer distance. In vitro laboratory systems can be useful to understand and control such complex biological mechanisms and, in a biomimetic approach, we present in this paper a model based on three basic features, namely (i) the compartmentalization of chemical information (using microfluidics), (ii) a stable emitter of periodic chemical signals inside compartments (Belousov-Zhabotinsky oscillating reaction) and (iii) a suitable spatio-temporal monitoring of the emitted chemical signal. In particular, starting from our recent work on the communication among oscillators via chemical intermediates in networks of lipid-stabilised droplets, we discuss here the role of compartments and of the geometry of the system. We present 3 different experimental configurations, namely liposomes (water-in-water dispersions), double emulsions (water-in-oil-in-water dispersions) and simple emulsions (water-in-oil dispersions) and we show that the global behaviour of networks can be influenced and controlled by several experimental parameters, like the nature of the collecting solvent, the presence of dopants and the network geometry. Numerical models supporting and explaining the experimental findings are also discussed.

Keywords

Belousov-Zhabotinsky reaction Microfluidics Lipid droplets Chemical oscillators network Chemical coupling 

Notes

Acknowledgments

F.R. gratefully acknowledge the University of Salerno for the grants ORSA158121 and ORSA167988. F.R. and A.A-H. acknowledge the support through the COST Action CM1304 (Emergence and Evolution of Complex Chemical Systems).

References

  1. 1.
    Prigogine, I.: Time, structure and fluctuations. In: Nobel Lectures, Chemistry 1971–1980, pp. 263–285. World Scientific Publishing Co., Singapore (1977)Google Scholar
  2. 2.
    Nicolis, G., Prigogine, I.: Self-organization in Nonequilibrium Systems. Wiley, New York (1977)zbMATHGoogle Scholar
  3. 3.
    Field, R.J., Burger, M.: Oscillations and Traveling Waves in Chemical Systems. Wiley, New York (1985)Google Scholar
  4. 4.
    Ruiz-Mirazo, K., Briones, C., de la Escosura, A.: Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114(1), 285–366 (2014)CrossRefGoogle Scholar
  5. 5.
    Belousov, B.P.: A periodic reaction and its mechanism. In: Sbornik Referatov po Radiatsonno Meditsine, Moscow, Medgiz, pp. 145–147 (1958)Google Scholar
  6. 6.
    Zhabotinsky, A.M.: Periodic liquid phase reactions. Proc. Acad. Sci. USSR 157, 392–395 (1964)Google Scholar
  7. 7.
    Winfree, A.T.: The Geometry of Biological Time. Springer, Heidelberg (2001).  https://doi.org/10.1007/978-3-662-22492-2CrossRefzbMATHGoogle Scholar
  8. 8.
    Tiezzi, E.: Steps Towards an Evolutionary Physics. WIT Press, Southempton (2006)Google Scholar
  9. 9.
    Yamaguchi, T., Suematsu, N., Mahara, H.: Nonlinear dynamics in polymeric systems. In: Pojman, J.A., Tran-Cong-Miyata, Q. (eds.) Nonlinear Dynamics in Polymeric Systems. Volume 869 of ACS Symposium Series, Washington DC, pp. 16–27 (2004)Google Scholar
  10. 10.
    Yamaguchi, T., Epstein, I.R., Shimomura, M., Kunitake, T.: Introduction: engineering of self-organized nanostructures. Chaos 15(4), 047501-1–047501-3 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gompper, G., Domb, C., Green, M.S., Schick, M., Lebowitz, J.L.: Phase Transitions and Critical Phenomena: Self-assembling Amphiphilic Systems. Academic Press, Cambridge (1994)Google Scholar
  12. 12.
    Cevc, G.: Phospholipids Handbook. CRC Press, Boca Raton (1993)Google Scholar
  13. 13.
    Fennell-Evans, D., Wennerström, H.: The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. Wiley, Hoboken (1999)Google Scholar
  14. 14.
    Lach, S., Yoon, S.M., Grzybowski, B.A.: Tactic, reactive, and functional droplets outside of equilibrium. Chem. Soc. Rev. 45, 4766–4796 (2016)CrossRefGoogle Scholar
  15. 15.
    Ashkenasy, G., Hermans, T.M., Otto, S., Taylor, A.F.: Systems chemistry. Chem. Soc. Rev. 46(9), 2543–2554 (2017)CrossRefGoogle Scholar
  16. 16.
    Vanag, V.K., Epstein, I.R.: Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett. 87(22), 228301–4 (2001)CrossRefGoogle Scholar
  17. 17.
    Epstein, I.R., Xu, B.: Reaction-diffusion processes at the nano- and microscales. Nat. Nanotechnol. 11(4), 312–319 (2016)CrossRefGoogle Scholar
  18. 18.
    Rossi, F., Vanag, V.K., Epstein, I.R.: Pentanary cross-diffusion in water-in-oil microemulsions loaded with two components of the Belousov-Zhabotinsky reaction. Chem. Eur. J. 17(7), 2138–2145 (2011)CrossRefGoogle Scholar
  19. 19.
    Budroni, M.A., Lemaigre, L., De Wit, A., Rossi, F.: Cross-diffusion-induced convective patterns in microemulsion systems. Phys. Chem. Chem. Phys. 17(3), 1593–1600 (2015)CrossRefGoogle Scholar
  20. 20.
    Toiya, M., Vanag, V.K., Epstein, I.R.: Diffusively coupled chemical oscillators in a microfluidic assembly. Angew. Chem. Int. Ed. 47(40), 7753–7755 (2008)CrossRefGoogle Scholar
  21. 21.
    Delgado, J., Li, N., Leda, M., González-Ochoa, H.O., Fraden, S., Epstein, I.R.: Coupled oscillations in a 1D emulsion of Belousov-Zhabotinsky droplets. Soft Matter 7(7), 3155 (2011)CrossRefGoogle Scholar
  22. 22.
    Tompkins, N., Li, N., Girabawe, C., Heymann, M., Ermentrout, G.B., Epstein, I.R., Fraden, S.: Testing Turing’s theory of morphogenesis in chemical cells. Proc. Natl. Acad. Sci. 111(12), 4397–4402 (2014)CrossRefGoogle Scholar
  23. 23.
    Thutupalli, S., Herminghaus, S., Seemann, R.: Bilayer membranes in micro-fluidics: from gel emulsions to soft functional devices. Soft Matter 7(4), 1312 (2011)CrossRefGoogle Scholar
  24. 24.
    de Souza, T.P., Perez-Mercader, J.: Entrapment in giant polymersomes of an inorganic oscillatory chemical reaction and resulting chemo-mechanical coupling. Chem. Commun. 50(64), 8970–8973 (2014)CrossRefGoogle Scholar
  25. 25.
    Guzowski, J., Gizynski, K., Gorecki, J., Garstecki, P.: Microfluidic platform for reproducible self-assembly of chemically communicating droplet networks with predesigned number and type of the communicating compartments. Lab Chip 16(4), 764–772 (2016)CrossRefGoogle Scholar
  26. 26.
    Magnani, A., Marchettini, N., Ristori, S., Rossi, C., Rossi, F., Rustici, M., Spalla, O., Tiezzi, E.: Chemical waves and pattern formation in the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/water lamellar system. J. Am. Chem. Soc. 126(37), 11406–11407 (2004)CrossRefGoogle Scholar
  27. 27.
    Ristori, S., Rossi, F., Biosa, G., Marchettini, N., Rustici, M., Tiezzi, E.: Interplay between the Belousov-Zhabotinsky reaction-diffusion system and biomimetic matrices. Chem. Phys. Lett. 436, 175–178 (2007)CrossRefGoogle Scholar
  28. 28.
    Rossi, F., Ristori, S., Rustici, M., Marchettini, N., Tiezzi, E.: Dynamics of pattern formation in biomimetic systems. J. Theor. Biol. 255(4), 404–412 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Torbensen, K., Rossi, F., Ristori, S., Abou-Hassan, A.: Chemical communication and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-oscillators produced by microfluidics. Lab Chip 17(7), 1179–1189 (2017)CrossRefGoogle Scholar
  30. 30.
    Tomasi, R., Noel, J.M., Zenati, A., Ristori, S., Rossi, F., Cabuil, V., Kanoufi, F., Abou-Hassan, A.: Chemical communication between liposomes encapsulating a chemical oscillatory reaction. Chem. Sci. 5(5), 1854–1859 (2014)CrossRefGoogle Scholar
  31. 31.
    Rossi, F., Zenati, A., Ristori, S., Noel, J.M., Cabuil, V., Kanoufi, F., Abou-Hassan, A.: Activatory coupling among oscillating droplets produced in microfluidic based devices. Int. J. Unconventional Comput. 11(1), 23–36 (2015)Google Scholar
  32. 32.
    Torbensen, K., Ristori, S., Rossi, F., Abou-Hassan, A.: Tuning the chemical communication of oscillating microdroplets by means of membrane composition. J. Phys. Chem. C 121(24), 13256–13264 (2017)CrossRefGoogle Scholar
  33. 33.
    Nii, T., Ishii, F.: Properties of various phosphatidylcholines as emulsifiers or dispersing agents in microparticle preparations for drug carriers. Colloids Surf. B: Biointerfaces 39(1), 57–63 (2004)CrossRefGoogle Scholar
  34. 34.
    Di Cola, E., Torbensen, K., Clemente, I., Rossi, F., Ristori, S., Abou-Hassan, A.: Lipid stabilized water- oil interfaces studied by micro focusing small angle X-ray scattering. Langmuir 33(36), 9100–9105 (2017)CrossRefGoogle Scholar
  35. 35.
    Utada, A.S., Lorenceau, E., Link, D.R., Kaplan, P.D., Stone, H.A., Weitz, D.A.: Monodisperse double emulsions generated from a microcapillary device. Science 308(5721), 537–541 (2005)CrossRefGoogle Scholar
  36. 36.
    Stockmann, T.J., Noël, J.M., Ristori, S., Combellas, C., Abou-Hassan, A., Rossi, F., Kanoufi, F.: Scanning electrochemical microscopy of Belousov-Zhabotinsky reaction: how confined oscillations reveal short lived radicals and auto-catalytic species. Anal. Chem. 87(19), 9621–9630 (2015)CrossRefGoogle Scholar
  37. 37.
    Pikovsky, A.S., Rosenblum, M.G., Osipov, G.V., Kurths, J.: Phase synchronization of chaotic oscillators by external driving. Phys. D: Nonlinear Phenom. 104(3–4), 219–238 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Fukuda, H., Morimura, H., Kai, S.: Global synchronization in two-dimensional lattices of discrete Belousov-Zhabotinsky oscillators. Phys. D: Nonlinear Phenom. 205(1–4), 80–86 (2005)CrossRefGoogle Scholar
  39. 39.
    Vanag, V.K., Epstein, I.R.: Excitatory and inhibitory coupling in a one-dimensional array of Belousov-Zhabotinsky micro-oscillators: theory. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(6 Pt 2), 066209 (2011)CrossRefGoogle Scholar
  40. 40.
    Torbensen, K., Rossi, F., Pantani, O.L., Ristori, S., Abou-Hassan, A.: Interaction of the Belousov-Zhabotinsky reaction with phospholipid engineered membranes. J. Phys. Chem. B 119(32), 10224–10230 (2015)CrossRefGoogle Scholar
  41. 41.
    Benini, O., Cervellati, R., Fetto, P.: Experimental and mechanistic study of the bromomalonic acid/bromate oscillating system catalyzed by [Fe(phen)3]2+. Int. J. Chem. Kinet. 30(4), 291–300 (1998)CrossRefGoogle Scholar
  42. 42.
    Rossi, F., Varsalona, R., Liveri, M.L.T.: New features in the dynamics of a ferroin-catalyzed Belousov-Zhabotinsky reaction induced by a zwitterionic surfactant. Chem. Phys. Lett. 463(4–6), 378–382 (2008)CrossRefGoogle Scholar
  43. 43.
    Rossi, F., Lombardo, R., Sciascia, L., Sbriziolo, C., Liveri, M.L.T.: Spatio-temporal perturbation of the dynamics of the ferroin catalyzed Belousov-Zhabotinsky reaction in a batch reactor caused by sodium dodecyl sulfate micelles. J. Phys. Chem. B 112, 7244–7250 (2008)CrossRefGoogle Scholar
  44. 44.
    Noyes, R.M., Field, R., Koros, E.: Oscillations in chemical systems. I. Detailed mechanism in a system showing temporal oscillations. J. Am. Chem. Soc. 94(4), 1394–1395 (1972)CrossRefGoogle Scholar
  45. 45.
    Zhang, J., Unwin, P.R.: Kinetics of bromine transfer across Langmuir monolayers of phosphatidylethanolamines at the water/air interface. Phys. Chem. Chem. Phys. 5(18), 3979–3983 (2003)CrossRefGoogle Scholar
  46. 46.
    Xiang, T.X., Anderson, B.D.: Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory. Biophys. J. 72(1), 223–237 (1997)CrossRefGoogle Scholar
  47. 47.
    Kummer, U., Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P.: COPASI-a COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Biology “A. Zambelli”University of SalernoFiscianoItaly
  2. 2.Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIXParisFrance
  3. 3.Department of Chemistry and CSGIUniversity of FlorenceFlorenceItaly

Personalised recommendations