Identification of “Die Hard” Nodes in Complex Networks: A Resilience Approach

  • Angela Lombardi
  • Sabina Tangaro
  • Roberto Bellotti
  • Angelo Cardellicchio
  • Cataldo Guaragnella
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 830)


The topology of a network defines the structure on which physical processes dynamically evolve. Even though the topological analysis of these networks has revealed important properties about their organization, the components of real complex networks can exhibit other significant characteristics. In this work we focus in particular on the distribution of the weights associated to the links. Here, a novel metric is proposed to quantify the importance of both nodes and links in weighted scale-free networks in relation to their resilience. The resilience index takes into account the complete connectivity patterns of each node with all the other nodes in the network and is not correlated with other centrality metrics in heterogeneous weight distributions.


Complex networks Resilience Percolation Centrality Scale-free networks Weighted centrality metrics 


  1. 1.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U.S.A. 101(11), 3747–3752 (2004)CrossRefGoogle Scholar
  4. 4.
    Barabási, B.A.L., Bonabeau, E.: Scale-free. Sci. Am. 288(5), 50–59 (2003)CrossRefGoogle Scholar
  5. 5.
    Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65(5), 056109 (2002)CrossRefGoogle Scholar
  6. 6.
    Gol’dshtein, V., Koganov, G., Surdutovich, G.I.: Vulnerability and hierarchy of complex networks. arXiv preprint arXiv:cond-mat/0409298 (2004)
  7. 7.
    Latora, V., Marchiori, M.: Vulnerability and protection of infrastructure networks. Phys. Rev. E 71(1), 015103 (2005)CrossRefGoogle Scholar
  8. 8.
    Boccaletti, S., Buldú, J., Criado, R., Flores, J., Latora, V., Pello, J., Romance, M.: Multiscale vulnerability of complex networks. Chaos: Interdisc. J. Nonlinear Sci. 17(4), 043110 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Mishkovski, I., Biey, M., Kocarev, L.: Vulnerability of complex networks. Commun. Nonlinear Sci. Numer. Simul. 16(1), 341–349 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)CrossRefGoogle Scholar
  11. 11.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Characterization and modeling of weighted networks. Phys. A: Stat. Mech. Appl. 346(1), 34–43 (2005)CrossRefGoogle Scholar
  13. 13.
    Newman, M.E.: Analysis of weighted networks. Phys. Rev. E 70(5), 056131 (2004)CrossRefGoogle Scholar
  14. 14.
    Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)CrossRefGoogle Scholar
  15. 15.
    Brandes, U.: A faster algorithm for betweenness centrality. J. Math. sociol. 25(2), 163–177 (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)CrossRefGoogle Scholar
  17. 17.
    Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)CrossRefGoogle Scholar
  18. 18.
    DallAsta, L., Barrat, A., Barthélemy, M., Vespignani, A.: Vulnerability of weighted networks. J. Stat. Mech: Theory Exp. 2006(04), P04006 (2006)Google Scholar
  19. 19.
    Bianconi, G.: Emergence of weight-topology correlations in complex scale-free networks. EPL (Europhys. Lett.) 71(6), 1029 (2005)CrossRefGoogle Scholar
  20. 20.
    Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Soc. Netw. 28(4), 466–484 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Angela Lombardi
    • 1
  • Sabina Tangaro
    • 2
  • Roberto Bellotti
    • 2
    • 3
  • Angelo Cardellicchio
    • 1
  • Cataldo Guaragnella
    • 1
  1. 1.Dipartimento di Ingegneria Elettrica e dell’InformazionePolitecnico di BariBariItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, Sezione di BariBariItaly
  3. 3.Dipartimento Interateneo di Fisica “M. Merlin”Universitá degli Studi di Bari “A. Moro”BariItaly

Personalised recommendations