Estimating Effects of Extrinsic Noise on Model Genes and Circuits with Empirically Validated Kinetics

  • Samuel M. D. Oliveira
  • Mohamed N. M. Bahrudeen
  • Sofia Startceva
  • Andre S. Ribeiro
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 830)


Recent studies of Escherichia coli transcription dynamics using time-lapse confocal microscopy and in vivo single-RNA detection confirmed that transcription initiation has two main rate-limiting steps. Here, we argue that this allows selective ‘tuning’ of the effects of extrinsic noise on a multi-scale level that ranges from individual genes to large-scale gene networks. First, using empirically validated stochastic models of transcription and translation, we show that the effects of RNA polymerase numbers’ cell-to-cell variability on the cell-to-cell diversity in RNA numbers decrease as the relative time-length of the open complex formation increases. Next, using a stochastic model of a 2-genes symmetric toggle switch, we show that the cell-to-cell diversity of the switching frequency due to cell-to-cell variability in RNA polymerase numbers also depends on the promoter kinetics. Finally, from the binarized protein numbers over time of 50-gene network models where genes interact by repression, we calculate the cell-to-cell variability of the mutual information and Lempel-Ziv complexity of the networks dynamics, and find that, while arising from the cell-to-cell variability in RNA polymerase numbers, these variability levels also depend on the promoter initiation kinetics. Given this, we hypothesize that E. coli may be capitalizing on the 2 rate-limiting steps’ nature of transcription initiation to tune the effects of extrinsic noise at the single gene, motifs, and large gene regulatory network levels.


Transcription initiation Extrinsic noise Genetic circuits Mutual information Lempel-Ziv complexity 



Work supported by Academy of Finland (295027 ASR), Academy of Finland Key Project Funding (305342 ASR), Jane and Aatos Erkko Foundation (610536 ASR), Finnish Academy of Science and Letters (SO), and Tampere University of Technology President’s Graduate Program (SS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


  1. 1.
    Jishage, M., Iwata, A., Ueda, S., Ishihama, A.: Regulation of RNA polymerase sigma sub-unit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions. J. Bacteriol. 178, 5447–5451 (1996)CrossRefGoogle Scholar
  2. 2.
    Rahman, M., Hasan, M.R., Oba, T., Shimizu, K.: Effect of rpoS gene knockout on the metabolism of Escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations. Biotechnol. Bioeng. 94, 585–595 (2006)CrossRefGoogle Scholar
  3. 3.
    Megerle, J.A., Fritz, G., Gerland, U., Jung, K., Rädler, J.O.: Timing and dynamics of single cell gene expression in the arabinose utilization system. Biophys. J. 95, 2103–2115 (2008)CrossRefGoogle Scholar
  4. 4.
    Jones, D.L., Brewster, R.C., Phillips, R.: Promoter architecture dictates cell-to-cell variability in gene expression. Science 346, 1533–1537 (2014)CrossRefGoogle Scholar
  5. 5.
    Farewell, A., Kvint, K., Nyström, T.: Negative regulation by RpoS: a case of sigma factor competition. Mol. Microbiol. 29, 1039–1051 (1998)CrossRefGoogle Scholar
  6. 6.
    Hengge-Aronis, R.: Recent insights into the general stress response regulatory network in Escherichia coli. J. Mol. Microbiol. Biotechnol. 4, 341–346 (2002)Google Scholar
  7. 7.
    Kandavalli, V.K., Tran, H., Ribeiro, A.S.: Effects of σ factor competition on the in vivo kinetics of transcription initiation in E. coli. BBA Gene Regul. Mech. 1859, 1281–1288 (2016)Google Scholar
  8. 8.
    McClure, W.R.: Rate-limiting steps in RNA chain initiation. Proc. Natl. Acad. Sci. USA 77, 5634–5648 (1980)CrossRefGoogle Scholar
  9. 9.
    Lloyd-Price, J., Startceva, S., Kandavalli, V., Chandraseelan, J., Goncalves, N., Oliveira, S.M.D., Häkkinen, A., Ribeiro, A.S.: Dissecting the stochastic transcription initiation process in live Escherichia coli. DNA Res. 23(3), 203–214 (2016)CrossRefGoogle Scholar
  10. 10.
    Bahrudeen, M.N.M., Startceva, S., Ribeiro, A.S.: Effects of extrinsic noise are promoter kinetics dependent. In: The 9th International Conference on Bioinformatics and Biomedical Technology on Proceedings, ICBBT 2017, Lisbon, Portugal, pp. 44–47 (2017)Google Scholar
  11. 11.
    Bahrudeen, M.N.M., Startceva, S., Ribeiro, A.S.: Tuning extrinsic noise effects on a small genetic circuit. In: The European Conference on Artificial Life on Proceedings, ECAL 2017, Lyon, France, vol. 14, pp. 454–459 (2017)Google Scholar
  12. 12.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  13. 13.
    Lloyd-Price, J., Gupta, A., Ribeiro, A.S.: SGNS2: a compartmentalized stochastic chemical kinetics simulator for dynamic cell populations. Bioinformatics 28, 3004–3005 (2012)CrossRefGoogle Scholar
  14. 14.
    Bernstein, J.A., Khodursky, A.B., Pei-Hsun, L., Lin-Chao, S., Cohen, S.N.: Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl. Acad. Sci. USA 99, 9697–9702 (2002)CrossRefGoogle Scholar
  15. 15.
    Taniguchi, Y., Choi, P.J., Li, G.-W., et al.: Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010)CrossRefGoogle Scholar
  16. 16.
    Mitarai, N., Sneppen, K., Pedersen, S.: Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization. J. Mol. Biol. 382, 236–245 (2008)CrossRefGoogle Scholar
  17. 17.
    Bremer, H., Dennis, P.P.: Modulation of chemical composition and other parameters of the cell by growth rate. In: Neidhardt, F.C. (ed.) Escherichia Coli and Salmonella, 2nd edn, pp. 1553–1569. ASM Press, Washington, DC (1996)Google Scholar
  18. 18.
    Kennel, D., Riezman, H.: Transcription and translation initiation frequencies of the Escherichia coli lac operon. J. Mol. Biol. 114(1), 1–21 (1977)CrossRefGoogle Scholar
  19. 19.
    Cormack, B.P., Valdivia, R.H., Falkow, S.: FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173(1), 33–38 (1996)CrossRefGoogle Scholar
  20. 20.
    Neubauer, Z., Calef, E.: Immunity phase-shift in defective lysogens: non-mutational hereditary change of early regulation of λ Prophage. J. Mol. Biol. 51, 1–13 (1970)CrossRefGoogle Scholar
  21. 21.
    Arkin, A., Ross, J., McAdams, H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998)Google Scholar
  22. 22.
    Fu, Y., Jarboe, L.R., Dickerson, J.A.: Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities. BMC Bioinform. 12(233) (2011).
  23. 23.
    Saecker, R.M., Record, M.T., Dehaseth, P.L.: Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J. Mol. Biol. 412, 754–771 (2011)CrossRefGoogle Scholar
  24. 24.
    Chamberlin, M.: The selectivity of transcription. Annu. Rev. Biochem. 43, 721–775 (1974)CrossRefGoogle Scholar
  25. 25.
    deHaseth, P.L., Zupancic, M.L., Record, M.T.: RNA polymerase promoter interactions: the comings and goings of RNA polymerase. J. Bacteriol. 180, 3019–3025 (1998)Google Scholar
  26. 26.
    Ribeiro, A.S., Kauffman, S.A., Lloyd-Price, J., Samuelsson, B., Socolar, J.E.S.: Mutual information in random Boolean models of regulatory networks. Phys. Rev. E 77, 011901 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lempel, A., Ziv, J.: On the Complexity of Finite Sequences. IEEE Trans. Inform. Theory 22, 75–81 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Shmulevich, I., Kauffman, S.A., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Natl. Acad. Sci. USA 102(38), 13439–13444 (2005)CrossRefGoogle Scholar
  29. 29.
    Borowska, M., Oczeretko, E., Mazurek, A., Kitlas, A., Kuć, P.: Application of the Lempel-Ziv complexity measure to the analysis of biosignals and medical images. In: Annual Proceedings of Medical Science, vol. 50, Suppl. 2 (2005)Google Scholar
  30. 30.
    Ribeiro, A.S., Kauffman, S.A.: Noisy attractors and ergodic sets in models of gene regulatory networks. J. Theor. Biol. 247(4), 743–755 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    McClure, W.R.: Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem. 54, 171–204 (1985)CrossRefGoogle Scholar
  32. 32.
    Roussel, M.R., Zhu, R.: Validation of an algorithm for delay stochastic simulation of transcription and translation in prokaryotic gene expression. Phys. Biol. 3, 274–284 (2006)CrossRefGoogle Scholar
  33. 33.
    Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)CrossRefGoogle Scholar
  34. 34.
    Airoldi, E.M., Carley, K.M.: Sampling algorithms for pure network topologies: a study on the stability and the separability of metric embeddings. ACM SIGKDD Explor. Newsl. 7(2), 13–22 (2005)CrossRefGoogle Scholar
  35. 35.
    Bollobas, B.: Random Graphs, 2nd edn. Academic Press, New York (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Biosystem Dynamics, BioMediTech InstituteTampere University of TechnologyTampereFinland
  2. 2.Multi-scaled Biodata Analysis and Modelling Research CommunityTampere University of TechnologyTampereFinland

Personalised recommendations