Advertisement

Simulating Populations of Protocells with Uneven Division

  • Martina Musa
  • Marco Villani
  • Roberto Serra
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 830)

Abstract

Protocells should be similar to present-day biological cells, but much simpler. They are believed to have played a key role in the origin of life, and they may also be the basis of a new technology with tremendous opportunities. In this work we study the effect of uneven division processes on the synchronization of the duplication rates of protocells’ membrane and internal materials.

Keywords

Protocell Protocell populations Models Synchronization Replicators 

References

  1. 1.
    Rasmussen, S., Bedau, M.A., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F. (eds.): Protocells. The MIT Press, Cambridge (2008)Google Scholar
  2. 2.
    Schrum, J.P., Zhu, T.F., Szostak, J.W.: The origins of cellular life. Cold Spring Harb. Perspect. Biol. 2, a002212 (2010)CrossRefGoogle Scholar
  3. 3.
    Serra, R., Villani, M.: A stochastic model of growing and dividing protocells. Modelling Protocells. UCS, pp. 105–147. Springer, Dordrecht (2017).  https://doi.org/10.1007/978-94-024-1160-7_5CrossRefGoogle Scholar
  4. 4.
    Smith, J.M., Szathmáry, E.: The Major Transitions in Evolution. W.H. Freeman Spektrum, Oxford (1995)Google Scholar
  5. 5.
    Serra, R.: The complex systems approach to protocells. In: Pizzuti, C., Spezzano, G. (eds.) Advances in Artificial Life and Evolutionary Computation, WIVACE 2014. Communications in Computer and Information Science, vol. 445, pp. 201–211. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12745-3_16Google Scholar
  6. 6.
    Villani, M., Filisetti, A., Graudenzi, A., Damiani, C., Carletti, T., Serra, R.: Growth and division in a dynamic protocell model. Life 4, 837–864 (2014)CrossRefGoogle Scholar
  7. 7.
    Filisetti, A., Serra, R., Carletti, T., Villani, M., Poli, I.: Non-linear protocell models: synchronization and chaos. Europhys. J. B 77, 249–256 (2010)Google Scholar
  8. 8.
    Carletti, T., Serra, R., Poli, I., Villani, M., Filisetti, A.: Sufficient conditions for emergent synchronization in protocell models. J. Theor. Biol. 254, 741–751 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Filisetti, A., Serra, R., Carletti, T., Poli, I., Villani, M.: Synchronization phenomena in protocell models. BRL. Biophys. Rev. Lett. 3(1/2), 325–342 (2008)CrossRefGoogle Scholar
  10. 10.
    Serra, R., Carletti, T., Poli, I.: Synchronization phenomena in surface reaction models of protocells. Artif. Life 13, 1–16 (2007)CrossRefGoogle Scholar
  11. 11.
    Svetina, S.: Vesicle budding and the origin of cellular life. ChemPhysChem 10, 2769–2776 (2009)CrossRefGoogle Scholar
  12. 12.
    Solé, R.V., Macía, J., Fellermann, H., Munteanu, A., Sardanyés, J., Valverde, S.: Models of protocell replication. In: Rasmussen, S., Bedau, M.A., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F. (eds.) Protocells, pp. 213–231. The MIT Press, Cambridge (2008)CrossRefGoogle Scholar
  13. 13.
    Ruiz-Mirazo, K., Briones, C., de la Escosura, A.: Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014)CrossRefGoogle Scholar
  14. 14.
    Luisi, P.L., Ferri, F., Stano, P.: Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93, 1–13 (2006)CrossRefGoogle Scholar
  15. 15.
    Luisi, P.L.: The Emergence of Life: From Chemical Origins to Synthetic Biology. Cambridge University Press, New York (2007)Google Scholar
  16. 16.
    Terasawa, H., Nishimura, K., Suzuki, H., Matsuura, T., Yomo, T.: Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules. Proc. Natl. Acad. Sci. 109, 5942–5947 (2012)CrossRefGoogle Scholar
  17. 17.
    Rasmussen, S., Chen, L., Stadler, B.M.R., Stadler, P.F.: Photo-organism kinetics: Evolutionary dynamics of lipid aggregates with genes and metabolism. Orig. Life Evol. Biosph. 34, 171–180 (2004)CrossRefGoogle Scholar
  18. 18.
    Rocheleau, T., Rasmussen, S., Nielsen, P.E., Jacobi, M.N., Ziock, H.: Emergence of protocellular growth laws. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1841–1845 (2007)CrossRefGoogle Scholar
  19. 19.
    Calvanese, G., Villani, M., Serra, R.: Synchronization in near-membrane reaction models of protocells. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 167–178. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57711-1_15CrossRefGoogle Scholar
  20. 20.
    Sacerdote, M.G., Szostak, J.W.: Semipermeable lipid bilayers exhibit diastereoselectivity favoring ribose. Proc. Natl. Acad. Sci. 102, 6004–6008 (2005)CrossRefGoogle Scholar
  21. 21.
    Mavelli, F., Ruiz-Mirazo, K.: Theoretical conditions for the stationary reproduction of model protocells. Integr. Biol. 5, 324–341 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Martina Musa
    • 1
  • Marco Villani
    • 1
    • 2
  • Roberto Serra
    • 1
    • 2
  1. 1.Department of Physics, Informatics and MathematicsUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.European Centre for Living TechnologyCa’ Foscari UniversityVeniceItaly

Personalised recommendations