Skip to main content

A Relevance Index Method to Infer Global Properties of Biological Networks

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 830))

Abstract

Many complex systems, both natural and artificial, may be represented by networks of interacting nodes. Nevertheless, it is often difficult to find meaningful correspondences between the dynamics expressed by these systems and the topological description of their networks. In contrast, many of these systems may be well described in terms of coordinated behavior of their dynamically relevant parts. In this paper we use the recently proposed Relevance Index approach, based on information-theoretic measures. Starting from the observation of the dynamical states of any system, the Relevance Index is able to provide information about its organization. Moreover, we show how the application of the proposed approach leads to novel and effective interpretations in the T helper network case study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The lower and upper level being constituted by the fluid particles and their global stream, by cells and the organism to which they belong, and by human beings and societies, respectively.

  2. 2.

    In this work we do not make hypotheses about the biological plausibility (or stability or biological function, if any) of these attractors, suggesting the interested readers to refer to Mendoza and Xenarios [19] and to the references quoted therein. Rather we highlight that, once a mathematical model has been established, its structure implies the presence of a well-defined set of attractors: so, an analysis that takes into account their presence (and therefore which highlights their interrelated dynamical relationships) should provide better results than a method that does not act in this way.

  3. 3.

    The node JAK1 is constantly inactive in all attractors. Thus, its presence is useless for the purposes of a dynamical analysis and no CRS include it. Indeed, it is active in transient states, but this kind of analysis is out of the scope of this work (see [24] for a first comparison of the results of RI application to transients and asymptotic states).

  4. 4.

    Note that the node STAT1 participates in Group 3, one of the “sensors groups” of the Th differentiation system.

References

  1. Albert, R., Jeong, H., Barabási, A.L.: Internet: diameter of the world-wide web. Nature 401(6749), 130–131 (1999)

    Article  Google Scholar 

  2. Cario, M.C., Nelson, B.L.: Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix. Technical report (1997)

    Google Scholar 

  3. Cimorelli, F., Priscoli, F.D., Pietrabissa, A., Celsi, L.R., Suraci, V., Zuccaro, L.: A distributed load balancing algorithm for the control plane in software defined networking. In: 2016 24th Mediterranean Conference on Control and Automation (MED), pp. 1033–1040, June 2016

    Google Scholar 

  4. De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)

    Article  Google Scholar 

  5. Delli Priscoli, F., Di Giorgio, A., Lisi, F., Monaco, S., Pietrabissa, A., Celsi, L.R., Suraci, V.: Multi-agent quality of experience control. Int. J. Control Autom. Syst. 15, 892–904 (2017)

    Article  Google Scholar 

  6. Ebel, H., Mielsch, L.I., Bornholdt, S.: Scale-free topology of e-mail networks. Phys. Rev. E 66, 035103 (2002). http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:cond-mat/0201476

    Article  Google Scholar 

  7. Emmeche, C., Køppe, S., Stjernfelt, F.: Explaining emergence: towards an ontology of levels. J. Gen. Philos. Sci. 28(1), 83–117 (1997)

    Article  Google Scholar 

  8. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. SIGCOMM Comput. Commun. Rev. 29(4), 251–262 (1999)

    Article  MATH  Google Scholar 

  9. Feldt, S., Waddell, J., Hetrick, V., Berke, J., Żochowski, M.: Functional clustering algorithm for the analysis of dynamic network data. Phys. Rev. E 79(5), 056104 (2009)

    Article  Google Scholar 

  10. Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Poli, I., Serra, R.: On some properties of information theoretical measures for the study of complex systems. In: Pizzuti, C., Spezzano, G. (eds.) WIVACE 2014. CCIS, vol. 445, pp. 140–150. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12745-3_12

    Google Scholar 

  11. Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Serra, R.: Exploring the organisation of complex systems through the dynamical interactions among their relevant subsets. In: Proceedings of the European Conference on Artificial Life, pp. 286–293 (2015)

    Google Scholar 

  12. Haken, H.: An introduction. Synergetics, pp. 1–387. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-10184-1_1

    Chapter  Google Scholar 

  13. Herrgård, M.J., Covert, M.W., Palsson, B.Ø.: Reconstruction of microbial transcriptional regulatory networks. Curr. Opin. Biotechnol. 15(1), 70–77 (2004)

    Article  Google Scholar 

  14. Huang, Y., Wange, R.L.: T cell receptor signaling: beyond complex complexes. J. Biol. Chem. 279(28), 28827–28830 (2004)

    Article  Google Scholar 

  15. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  Google Scholar 

  16. Johnson, J.: Hypernetworks in the Science of Complex Systems, vol. 3. World Scientific, Singapore (2013)

    MATH  Google Scholar 

  17. Johnston, H.: Cliques of a graph-variations on the Bron-Kerbosch algorithm. Int. J. Parallel Prog. 5(3), 209–238 (1976)

    MathSciNet  MATH  Google Scholar 

  18. Lane, D., Pumain, D., van der Leeuw, S.E., West, G.: Complexity Perspectives in Innovation and Social Change, vol. 7. Springer Science and Business Media, Berlin (2009). https://doi.org/10.1007/978-1-4020-9663-1

    Book  Google Scholar 

  19. Mendoza, L., Xenarios, I.: A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor. Biol. Med. Model. 3(1), 13 (2006)

    Article  Google Scholar 

  20. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  21. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  Google Scholar 

  22. Remy, E., Ruet, P., Mendoza, L., Thieffry, D., Chaouiya, C.: From logical regulatory graphs to standard petri nets: dynamical roles and functionality of feedback circuits. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS, vol. 4230, pp. 56–72. Springer, Heidelberg (2006). https://doi.org/10.1007/11905455_3

    Chapter  Google Scholar 

  23. Roberto Serra, R., Villani, M.: Modelling Protocells. Springer Science and Business Media, Dordrecht (2017). https://doi.org/10.1007/978-94-024-1160-7

    Book  MATH  Google Scholar 

  24. Roli, A., Villani, M., Caprari, R., Serra, R.: Identifying critical states through the relevance index. Entropy 19(2), 73 (2017)

    Article  Google Scholar 

  25. Ruppin, E., Papin, J.A., De Figueiredo, L.F., Schuster, S.: Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks. Curr. Opin. Biotechnol. 21(4), 502–510 (2010)

    Article  Google Scholar 

  26. Sani, L., Amoretti, M., Vicari, E., Mordonini, M., Pecori, R., Roli, A., Villani, M., Cagnoni, S., Serra, R.: Efficient search of relevant structures in complex systems. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 35–48. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-1_4

    Chapter  Google Scholar 

  27. Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. l. structural conditions of multistationarity and other nontrivial behavior. Chaos Interdisc. J. Nonlinear Sci. 11(1), 170–179 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks-l. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57(2), 247–276 (1995)

    Article  MATH  Google Scholar 

  29. Tononi, G., McIntosh, A.R., Russell, D.P., Edelman, G.M.: Functional clustering: identifying strongly interactive brain regions in neuroimaging data. Neuroimage 7(2), 133–149 (1998)

    Article  Google Scholar 

  30. Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Nat. Acad. Sci. 91(11), 5033–5037 (1994)

    Article  Google Scholar 

  31. Vicari, E., Amoretti, M., Sani, L., Mordonini, M., Pecori, R., Roli, A., Villani, M., Cagnoni, S., Serra, R.: GPU-based parallel search of relevant variable sets in complex systems. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 14–25. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57711-1_2

    Chapter  Google Scholar 

  32. Villani, M., Filisetti, A., Benedettini, S., Roli, A., Lane, D., Serra, R.: The detection of intermediate-level emergent structures and patterns. In: Proceedings of the European Conference on Artificial Life, pp. 372–378 (2013)

    Google Scholar 

  33. Villani, M., Roli, A., Filisetti, A., Fiorucci, M., Poli, I., Serra, R.: The search for candidate relevant subsets of variables in complex systems. Artif. Life 21, 412–431 (2015)

    Article  Google Scholar 

  34. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world" networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The work of Michele Amoretti was supported by the University of Parma Research Fund - FIL 2016 - Project “NEXTALGO: Efficient Algorithms for Next-Generation Distributed Systems”.

This work greatly benefited from discussions with Andrea Roli, to whom the authors are warmly thankful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Villani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Villani, M. et al. (2018). A Relevance Index Method to Infer Global Properties of Biological Networks. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2017. Communications in Computer and Information Science, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-78658-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78658-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78657-5

  • Online ISBN: 978-3-319-78658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics