Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

This chapter will introduce the radiation effects that are encountered in modern CMOS technologies that have been used in this work. A summary of the effects and the potential problems will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michael G. Stabin, editor. Interaction of Radiation with Matter. Springer New York, New York, NY, 2007.

    Google Scholar 

  2. Brian R. Martin. Nuclear and Particle Physics: An Introduction, 2nd Edition. Wiley, 2009.

    Google Scholar 

  3. Ervin B. Podgorsak. Radiation Physics for Medical Physicists. Springer, 2010.

    Google Scholar 

  4. Friedel Weinert Daniel Greenberger, Klaus Hentschel. Compendium of Quantum Physics. Springer, 2009.

    Google Scholar 

  5. James E. Martin. Physics for Radiation Protection: A Handbook, Second Edition. Wiley, 2006.

    Google Scholar 

  6. R. C. Lacoe. Improving integrated circuit performance through the application of hardness-by-design methodology. IEEE Transactions on Nuclear Science, 55(4):1903–1925, Aug 2008.

    Article  Google Scholar 

  7. J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, J. A. Felix, P. E. Dodd, P. Paillet, and V. Ferlet-Cavrois. Radiation effects in MOS oxides. IEEE Transactions on Nuclear Science, 55(4):1833–1853, Aug 2008.

    Article  Google Scholar 

  8. R. C. Lacoe, J. V. Osborn, R. Koga, S. Brown, and D. C. Mayer. Application of hardness-by-design methodology to radiation-tolerant ASIC technologies. IEEE Transactions on Nuclear Science, 47(6):2334–2341, Dec 2000.

    Article  Google Scholar 

  9. H. J. Barnaby. Total-ionizing-dose effects in modern CMOS technologies. IEEE Transactions on Nuclear Science, 53(6):3103–3121, Dec 2006.

    Google Scholar 

  10. N. S. Saks, D. B. Brown, and R. W. Rendell. Effects of switched gate bias on radiation-induced interface trap formation [MOS transistors]. IEEE Transactions on Nuclear Science, 38(6):1130–1139, Dec 1991.

    Article  Google Scholar 

  11. S. N. Rashkeev, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides. Effects of hydrogen motion on interface trap formation and annealing. IEEE Transactions on Nuclear Science, 51(6):3158–3165, Dec 2004.

    Article  Google Scholar 

  12. Kwok K. Ng Simon M. Sze. Physics of Semiconductor Devices, 3rd Edition. Wiley, 2006.

    Google Scholar 

  13. L. Ratti, L. Gaioni, M. Manghisoni, G. Traversi, and D. Pantano. Investigating degradation mechanisms in 130 nm and 90 nm commercial CMOS technologies exposed to up to 100 mrad ionizing radiation dose. In 2007 9th European Conference on Radiation and Its Effects on Components and Systems, pages 1–9, Sept 2007.

    Google Scholar 

  14. S. Gerardin, M. Bagatin, D. Cornale, L. Ding, S. Mattiazzo, A. Paccagnella, F. Faccio, and S. Michelis. Enhancement of transistor-to-transistor variability due to total dose effects in 65-nm MOSFETs. IEEE Transactions on Nuclear Science, 62(6):2398–2403, Dec 2015.

    Article  Google Scholar 

  15. A. Scarpa, A. Paccagnella, F. Montera, G. Ghibaudo, G. Pananakakis, G. Ghidini, and P. G. Fuochi. Ionizing radiation induced leakage current on ultra-thin gate oxides. IEEE Transactions on Nuclear Science, 44(6):1818–1825, Dec 1997.

    Article  Google Scholar 

  16. F. Faccio, S. Michelis, D. Cornale, A. Paccagnella, and S. Gerardin. Radiation-induced short channel (RISCE) and narrow channel (RINCE) effects in 65 and 130 nm MOSFETs. IEEE Transactions on Nuclear Science, 62(6):2933–2940, Dec 2015.

    Article  Google Scholar 

  17. F. Faccio and G. Cervelli. Radiation-induced edge effects in deep submicron CMOS transistors. IEEE Transactions on Nuclear Science, 52(6):2413–2420, Dec 2005.

    Article  Google Scholar 

  18. A. H. Johnston, R. T. Swimm, G. R. Allen, and T. F. Miyahira. Total dose effects in CMOS trench isolation regions. IEEE Transactions on Nuclear Science, 56(4):1941–1949, Aug 2009.

    Article  Google Scholar 

  19. Lihua Dai, Xiaonian Liu, Mengying Zhang, Leqing Zhang, Zhiyuan Hu, Dawei Bi, Zhengxuan Zhang, and Shichang Zou. Degradation induced by TID radiation and hot-carrier stress in 130-nm short channel PDSOI NMOSFETs. Microelectronics Reliability, 74:74–80, 2017.

    Article  Google Scholar 

  20. M. Silvestri, S. Gerardin, A. Paccagnella, and F. Faccio. Degradation induced by x-ray irradiation and channel hot carrier stresses in 130-nm NMOSFETs with enclosed layout. IEEE Transactions on Nuclear Science, 55(6):3216–3223, Dec 2008.

    Article  Google Scholar 

  21. M. Silvestri, S. Gerardin, A. Paccagnella, F. Faccio, and L. Gonella. Channel hot carrier stress on irradiated 130-nm NMOSFETs. IEEE Transactions on Nuclear Science, 55(4):1960–1967, Aug 2008.

    Article  Google Scholar 

  22. G. Anelli, M. Campbell, M. Delmastro, F. Faccio, S. Floria, A. Giraldo, E. Heijne, P. Jarron, K. Kloukinas, A. Marchioro, P. Moreira, and W. Snoeys. Radiation tolerant vlsi circuits in standard deep submicron CMOS technologies for the LHC experiments: practical design aspects. IEEE Transactions on Nuclear Science, 46(6):1690–1696, Dec 1999.

    Article  Google Scholar 

  23. W. J. Snoeys, T. A. P. Gutierrez, and G. Anelli. A new NMOS layout structure for radiation tolerance. IEEE Transactions on Nuclear Science, 49(4):1829–1833, Aug 2002.

    Article  Google Scholar 

  24. Miryala S. Kulis S. Christiansen J. Francisco R. Casas L.M.J., Ceresa1 D. and Gnani D. Characterization of radiation effects in 65nm digital circuits with the DRAD digital radiation test chip. In Topical workshop on electronics for Particle Physics (TWEPP),. IEEE, 26–30 Sept. 2016.

    Google Scholar 

  25. P. E. Dodd. Device simulation of charge collection and single-event upset. IEEE Transactions on Nuclear Science, 43(2):561–575, Apr 1996.

    Article  Google Scholar 

  26. D. A. Black, W. H. Robinson, I. Z. Wilcox, D. B. Limbrick, and J. D. Black. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization. IEEE Transactions on Nuclear Science, 62(4):1540–1549, Aug 2015.

    Article  Google Scholar 

  27. M. Mitrović, M. Hofbauer, B. Goll, K. Schneider-Hornstein, R. Swoboda, B. Steindl, K. O. Voss, and H. Zimmermann. Experimental investigation of single-event transient waveforms depending on transistor spacing and charge sharing in 65-nm CMOS. IEEE Transactions on Nuclear Science, 64(8):2136–2143, Aug 2017.

    Google Scholar 

  28. B. Narasimham, B. L. Bhuva, R. D. Schrimpf, L. W. Massengill, M. J. Gadlage, O. A. Amusan, W. T. Holman, A. F. Witulski, W. H. Robinson, J. D. Black, J. M. Benedetto, and P. H. Eaton. Characterization of digital single event transient pulse-widths in 130-nm and 90-nm CMOS technologies. IEEE Transactions on Nuclear Science, 54(6):2506–2511, Dec 2007.

    Article  Google Scholar 

  29. P. E. Dodd, M. R. Shaneyfelt, J. A. Felix, and J. R. Schwank. Production and propagation of single-event transients in high-speed digital logic ICs. IEEE Transactions on Nuclear Science, 51(6):3278–3284, Dec 2004.

    Article  Google Scholar 

  30. P. E. Dodd and L. W. Massengill. Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Transactions on Nuclear Science, 50(3):583–602, June 2003.

    Article  Google Scholar 

  31. R. García Alía, M. Brugger, S. Danzeca, V. Ferlet-Cavrois, C. Frost, R. Gaillard, J. Mekki, F. Saigné, A. Thornton, S. Uznanski, and F. Wrobel. SEL hardness assurance in a mixed radiation field. IEEE Transactions on Nuclear Science, 62(6):2555–2562, Dec 2015.

    Google Scholar 

  32. F. W. Sexton. Destructive single-event effects in semiconductor devices and ICs. IEEE Transactions on Nuclear Science, 50(3):603–621, June 2003.

    Article  Google Scholar 

  33. P. E. Dodd, M. R. Shaneyfelt, J. R. Schwank, and J. A. Felix. Current and future challenges in radiation effects on CMOS electronics. IEEE Transactions on Nuclear Science, 57(4): 1747–1763, Aug 2010.

    Article  Google Scholar 

  34. R. Terada and M. Watanabe. Error injection analysis for triple modular and penta-modular redundancies. In 2017 6th International Symposium on Next Generation Electronics (ISNE), pages 1–4, May 2017.

    Google Scholar 

  35. H. B. Wang, Y. Q. Li, L. Chen, L. X. Li, R. Liu, S. Baeg, N. Mahatme, B. L. Bhuva, S. J. Wen, R. Wong, and R. Fung. An SEU-tolerant dice latch design with feedback transistors. IEEE Transactions on Nuclear Science, 62(2):548–554, April 2015.

    Article  Google Scholar 

  36. J. E. Knudsen and L. T. Clark. An area and power efficient radiation hardened by design flip-flop. IEEE Transactions on Nuclear Science, 53(6):3392–3399, Dec 2006.

    Article  Google Scholar 

  37. S. Kulis. Single event effects mitigation with TMRG tool. Journal of Instrumentation, 12(01):C01082, 2017.

    Article  Google Scholar 

  38. R. W. Blaine, N. M. Atkinson, J. S. Kauppila, S. E. Armstrong, N. C. Hooten, T. D. Loveless, J. H. Warner, W. T. Holman, and L. W. Massengill. Differential charge cancellation (DCC) layout as an RHBD technique for bulk CMOS differential circuit design. IEEE Transactions on Nuclear Science, 59(6):2867–2871, Dec 2012.

    Article  Google Scholar 

  39. O. A. Amusan, A. F. Witulski, L. W. Massengill, B. L. Bhuva, P. R. Fleming, M. L. Alles, A. L. Sternberg, J. D. Black, and R. D. Schrimpf. Charge collection and charge sharing in a 130 nm CMOS technology. IEEE Transactions on Nuclear Science, 53(6):3253–3258, Dec 2006.

    Article  Google Scholar 

  40. J. S. Kauppila, A. L. Sternberg, M. L. Alles, A. M. Francis, J. Holmes, O. A. Amusan, and L. W. Massengill. A bias-dependent single-event compact model implemented into BSIM4 and a 90 nm CMOS process design kit. IEEE Transactions on Nuclear Science, 56(6):3152–3157, Dec 2009.

    Article  Google Scholar 

  41. J. Allison et al. Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1):270–278, Feb 2006.

    Google Scholar 

  42. M. Raine, M. Gaillardin, P. Paillet, and O. Duhamel. Towards a generic representation of heavy ion tracks to be used in engineering see simulation tools. IEEE Transactions on Nuclear Science, 61(4):1791–1798, Aug 2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prinzie, J., Steyaert, M., Leroux, P. (2018). Radiation Effects in CMOS Technology. In: Radiation Hardened CMOS Integrated Circuits for Time-Based Signal Processing . Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-78616-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78616-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78615-5

  • Online ISBN: 978-3-319-78616-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics