Advertisement

Teaching-Learning System Using Virtual Reality and Haptic Device to Improve Skills in Children of Initial Education

  • Marco Pilatásig
  • Emily Tobar
  • Liseth Paredes
  • Franklin Silva
  • Andres Acurio
  • Edwin Pruna
  • Zulia Sanchez
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 94)

Abstract

A virtual system for teaching - learning is presented using a haptic device, to improve the skills in children in initial education. Two interactive games were created using Unity 3D software. The first allows identifying the primary colors and notions of space. The second identifies the geometric figures as circle, triangle, square and rectangle. Both games has visual, auditory and strength feedback, which allows performing the tasks correctly. The outcomes allow evaluating the children learning process in initial education in a qualitative way by a educator.

Keywords

Virtual reality Haptic device Initial education Learning strategies 

Notes

Acknowledgment

We acknowledge to “Universidad de las Fuerzas Armadas ESPE” by financing fund the research project 2016-PIC-0017.

References

  1. 1.
    Ankshear, C., Knobel, M.: New technologies in early childhood literacy research: a review of research. J. Early Child. Lit. 3, 59–81 (2003)CrossRefGoogle Scholar
  2. 2.
    Skaalvik, E., Skaalvik, S.: Teachers’ perceptions of the school goal structure: relations with teachers’ goal orientations, work engagement, and job satisfaction. Int. J. Educ. Res. 62, 199–209 (2013)CrossRefGoogle Scholar
  3. 3.
    Blatchford, P., Kutnick, P., Baines, E.: Toward a social pedagogy of classroom group work. Int. J. Educ. Res. 39, 153–172 (2003)CrossRefGoogle Scholar
  4. 4.
    Méndez, R.: Investigación y Planificación Para El Diseño De Un Aula De Apoyo Psicopedagógico y Aporte De La Misma Al Desarrollo y Seguridad De La Educación De Niños Con Dificultades De Aprendizaje (Tesis de Maestría), Instituto de Altos Estudios Nacionales, Quito (2003)Google Scholar
  5. 5.
    Briones, M.: Guía metodológica correctiva integral neuropsicológica para dificultades específicas de lectura y escritura en niños/as de 3.er año de educación básica del Colegio Experimental El Sauce de Tumbaco (Tesis de Pregrado), Universidad Politécnica Salesiana, Quito (2013)Google Scholar
  6. 6.
    Muñoz, X.: Representaciones y actitudes del profesorado frente a la integración de Niños/as con Necesidades Educativas Especiales al aula común. Rev. Latinoam. Educ. Inclusiva 3, 25–35 (2008)Google Scholar
  7. 7.
    Guía metodológica para la implementación del currículo de educación inicial, pp. 7–15. Ministerio de Educación del Ecuador, Quito (2015)Google Scholar
  8. 8.
    Currículo de educación inicial 2014, pp. 12–16. Ministerio de Educación del Ecuador, Quito (2014)Google Scholar
  9. 9.
    Satava, R.: Virtual reality: current uses in medical simulation and future opportunities & medical technologies that VR can exploit in education and training. Proc. University of Washington Medical Center, USA, March 2013Google Scholar
  10. 10.
    Vahtivuori-Hänninen, S., Halinen, I., Niemi, H., Lavonen, J., Lipponen, L.: A new finnish national core curriculum for basic education (2014) and technology as an integrated tool for learning. In: Niemi, H., Multisilta, J., Lipponen, L., Vivitsou, M. (eds.) Finnish Innovations and Technologies in Schools, pp. 21–32. Sense Publishers (2014)Google Scholar
  11. 11.
    Martínez, E.V., Villacorta, C.S.J.: Spanish policies on new technologies in education. In: Plomp, T., Anderson, R.E., Kontogiannopoulou-Polydorides, G. (eds.) Cross National Policies and Practices on Computers in Education. Technology-Based Education Series, vol. 1, pp. 397–412. Springer, Dordrecht (1996)CrossRefGoogle Scholar
  12. 12.
    Wall, K., Higgins, S., Smith, H.: The visual helps me understand the complicated things’: pupil views of teaching and learning with interactive whiteboards. Br. J. Educ. Technol. 36, 851–867 (2005)CrossRefGoogle Scholar
  13. 13.
    Mar, N.Y.: Utilizing information and communication technologies to achieve lifelong education for all: a case study of Myanmar. Educ. Res. Policy Pract. 3, 141–166 (2004)CrossRefGoogle Scholar
  14. 14.
    Selwyn, N., Bullon, K.: Primary school children’s use of ICT. Br. J. Educ. Technol. 31, 321–332 (2000)CrossRefGoogle Scholar
  15. 15.
    Peltenburg, M., Van Den Heuvel-Panhuizen, M., Doig, B.: Mathematical power of special-needs pupils: an ICT-based dynamic assessment format to reveal weak pupils learning potential. Br. J. Educ. Technol. 40, 273–284 (2009)CrossRefGoogle Scholar
  16. 16.
    Mangen, A., Walgermo, B., Bronnick, K.: Reading linear texts on paper versus computer screen: effects on reading comprehension. Int. J. Educ. Res. 58, 61–68 (2013)CrossRefGoogle Scholar
  17. 17.
    Dinis, F.M., Guimarães, A.S., Carvalho, B.R., Martins, J.P.P.: Development of virtual reality game-based interfaces for civil engineering education. In: 2017 IEEE Global Engineering Education Conference (EDUCON), pp. 1195–1202. IEEE, April 2017Google Scholar
  18. 18.
    Elliman, J., Loizou, M., Loizides, F.: Virtual reality simulation training for student nurse education. In: 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-Games), pp. 1–2. IEEE, September 2016Google Scholar
  19. 19.
    Zhang, K., Liu, S.J.: The application of virtual reality technology in physical education teaching and training. In: 2016 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), pp. 245–248. IEEE, July 2016Google Scholar
  20. 20.
    Yu, X., Zhang, M., Xue, Y., Zhu, Z.: An exploration of developing multi-touch virtual learning tools for young children. In: 2010 2nd International Conference on Education Technology and Computer (ICETC), vol. 3, pp. V3–V4. IEEE, June 2010Google Scholar
  21. 21.
    Chaney, C.: Language development, metalinguistic skills, and print awareness in 3-year-old children. Appl. Psycholinguist. 13, 485–514 (1992)CrossRefGoogle Scholar
  22. 22.
    Clements, D., Swaminathan, S., Zeitler, M., Sarama, J.: Young children’s concepts of shape. J. Res. Math. Educ. 30(2), 192–212 (1999)CrossRefGoogle Scholar
  23. 23.
    Merwan, A., Maud, M., Adrian, G., Hiroyuqui, K.: FlexiFingers: multi-finger interaction in VR combining passive haptics and pseudo-haptics. In: IEEE Symposium on 3D User Interfaces (3DUI)/Los Angeles, CA, USA, pp. 103–106, March 2017Google Scholar
  24. 24.
    Palluel-Germain, R., Bara, F., De Boisferon, A.H., Hennion, B., Gouagout, P., Gentaz, E.: A visuo-haptic device-telemaque-increases kindergarten children’s handwriting acquisition. In: Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics 2007, pp. 72–77. IEEE, March 2007Google Scholar
  25. 25.
    Ahonen, T., O’Reilly, J.: Convergence of Broadband Internet, Virtual Reality and the Intelligent Home, Digital Korea, pp. 37–54 (2007)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marco Pilatásig
    • 1
  • Emily Tobar
    • 1
  • Liseth Paredes
    • 1
  • Franklin Silva
    • 1
  • Andres Acurio
    • 1
  • Edwin Pruna
    • 1
  • Zulia Sanchez
    • 2
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Unidad Educativa Mario Cobo BaronaAmbatoEcuador

Personalised recommendations