Skip to main content

Systemic Model of Cardiac Simulation with Ventricular Assist Device for Medical Decision Support

  • Conference paper
  • First Online:

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 521))

Abstract

Biomedical Engineering uses computational simulation models that are increasingly refined to represent human physiological systems. These models allow changes and analysis In Silico, optimizing implementation in a real (human) system. This work explores the CVSim computational model of the cardiovascular system, developed and used by MIT and Harvard Medical School, since 1984. The purpose of this work is the prospect of a resilient and adaptive system that by obtaining a mass of data; associated to the hemodynamic behavior of the set: Heart and Ventricular Assist Device (VAD); through simulations, to predict the behavior of this system in an autonomous intelligent environment, which can support the decision making about possible adverse events that may occur. It is intended to consider the profile of the patient with heart disease and the exploration of data: Big Data Analytics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cannon, W.B.: Organization for physiological homeostasis. Physiol. Rev. 9(3), 399–431 (1929)

    Article  Google Scholar 

  2. Oomen, P.J.A., Holland, M.A., Bouten, C.V.C., Kuhl, E., Loerakker, S.: Growth and remodeling play opposing roles during postnatal human heart valve development. Sci. Rep. 1–13 (2018)

    Google Scholar 

  3. Selye, H.: The general adaptation syndrome and the diseases of adaptation. J. Clin. Endocrinol. Metab. 6(2), 117–230 (1946)

    Article  Google Scholar 

  4. Cunanan, A.J., et al.: The general adaptation syndrome: a foundation for the concept of periodization. Sport. Med. 1–11 (2018)

    Google Scholar 

  5. Buckner, S.L., Mouser, J.G., Dankel, S.J., Jessee, M.B., Mattocks, K.T., Loenneke, J.P.: The General Adaptation Syndrome: potential misapplications to resistance exercise. J. Sci. Med. Sport 20(11), 1015–1017 (2017)

    Article  Google Scholar 

  6. Nelson, R.J.: An Introduction to Behavioral Endocrinology, 2nd edn. Sinauer Associates-Inc, Sunderland (2000)

    Google Scholar 

  7. Nansel, T.R., Thomas, D.M., Liu, A.: Efficacy of a behavioral intervention for pediatric type 1 diabetes across income. Am. J. Prev. Med. 49(6), 930–934 (2015)

    Article  Google Scholar 

  8. Webb, N.E., Little, B., Loupee-Wilson, S., Power, E.M.: Traumatic brain injury and neuro-endocrine disruption: medical and psychosocial rehabilitation. NeuroRehabilitation 34(4), 625–636 (2014)

    Google Scholar 

  9. Mrosovski, N.: Rheostasis: The Physiology of Change, vol. 19, no. 2. Oxford University Press, New York, Oxford (1990)

    Google Scholar 

  10. Blum, R.W.: Risco e resiliência: sumário para desenvolvimento de um programa, vol. 16, no. 9, August 1977

    Google Scholar 

  11. Masoomi, H., van de Lindt, J.W.: Restoration and functionality assessment of a community subjected to tornado hazard. Struct. Infrastruct. Eng. 14(3), 275–291 (2018)

    Article  Google Scholar 

  12. Bonanno, G.A.: Loss, trauma, and human resilience: have we underestimated the human capacity to thrive after extremely aversive events? Am. Psychol. 59(1), 20–28 (2004)

    Article  Google Scholar 

  13. Chiang, Y.C., Ling, T.Y.: Exploring flood resilience thinking in the retail sector under climate change: a case study of an estuarine region of Taipei City. Sustainability 9(9), 1650 (2017)

    Article  Google Scholar 

  14. Nahayo, L., et al.: Extent of disaster courses delivery for the risk reduction in Rwanda. Int. J. Disaster Risk Reduct. 27, 127–132 (2018)

    Article  Google Scholar 

  15. Timoshenko, S.P.: History of Strength of Materials (Dover Civil and Mechanical Engineering). Dover Publications, New York (1953)

    Google Scholar 

  16. Aliança Brasileira da Indústria Inovadora em Saúde – ABIIS: Saúde 4.0 - Propostas para Impulsionar o Ciclo das Inovações em Dispositivos Médicos (DMAs) no Brasil. Aliança Brasileira da Indústria Inovadora em Saúde – ABIIS, São Paulo (2015)

    Google Scholar 

  17. Silva, E.B., Scoton, M.L.R.P.D., Dias, E.M., Pereira, S.L.: AUTOMAÇÃO & SOCIEDADE - Quarta Revolução Industrial, um olhar para o Brasil. Braspot, Rio de Janeiro (2018)

    Google Scholar 

  18. Stewart, R.: Simulation: the practice of model development and use (2004)

    Google Scholar 

  19. Pidd, M.: Computer Simulation in Management Science, Part I, 4th edn., p. 332. Wiley, New York (1998)

    Google Scholar 

  20. Mattar, S.L.S., Najib, F., Oliveira, B.; Motta, S.: Pesquisa de Marketing: metodologia, planejamento, execução e análise, 7th edn., Rio de Janeiro (2014)

    Google Scholar 

  21. Moza, A., et al.: Parametrization of an in-silico circulatory simulation by clinical datasets – towards prediction of ventricular function following assist device implantation. Biomed. Eng./Biomed. Tech. 62(2), 123–130 (2017)

    Google Scholar 

  22. Centeno, M.A.: An introduction to simulation modeling. In: Winter Simulation Conference, pp. 15–22 (1996)

    Google Scholar 

  23. Dias, J.C., Dias, J.C., Filho, D.J.S.: Aplicação das tecnologias da indústria 4.0 em ambiente inteligente de tomada de decisão médica para pacientes com dav implantado. 14 Congr. da Soc. Lat. Am. Biomateriais, Orgãos Artif. e Eng. Tecidos - SLABO, pp. 74–81 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jônatas C. Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dias, J.C., Dias, J.C., Barboza, M., Sousa Sobrinho, J.R., Santos Filho, D.J. (2018). Systemic Model of Cardiac Simulation with Ventricular Assist Device for Medical Decision Support. In: Camarinha-Matos, L., Adu-Kankam, K., Julashokri, M. (eds) Technological Innovation for Resilient Systems. DoCEIS 2018. IFIP Advances in Information and Communication Technology, vol 521. Springer, Cham. https://doi.org/10.1007/978-3-319-78574-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78574-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78573-8

  • Online ISBN: 978-3-319-78574-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics