Multi-party (Leveled) Homomorphic Encryption on Identity-Based and Attribute-Based Settings

  • Veronika Kuchta
  • Gaurav Sharma
  • Rajeev Anand Sahu
  • Olivier Markowitch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10779)

Abstract

We present constructions of CPA-secure (leveled) homomorphic encryption from learning with errors (LWE) problem. We use the construction introduced by Gentry, Sahai and Waters ‘GSW’ (CRYPTO’13) as building blocks of our schemes. We apply their approximate eigenvector method to our scheme. In contrast to the GSW scheme we provide extensions of the (leveled) homomorphic identity-based encryption (IBE) and (leveled) homomorphic attribute-based encryption (ABE) on the multi-identity and multi-attribute settings respectively. We realize the (leveled) homomorphic property for the multi-party setting by applying tensor product and natural logarithm. Tensor product and natural logarithm allow to evaluate different ciphertexts computed under different public keys. Similar to the GSW scheme, our constructions do not need any evaluation key, which enables evaluation even without the knowledge of user’s public key.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_28 CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard model. http://www.cs.stanford.edu/~xb/ab09/
  3. 3.
    Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional encryption for threshold functions (or fuzzy IBE) from lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_17 CrossRefGoogle Scholar
  4. 4.
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proceedings of 28th Annual ACM Symposium on the Theory of Computing, pp. 99–108. ACM (1996)Google Scholar
  5. 5.
    Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., de Panafieu, E., Ràfols, C.: Attribute-based encryption schemes with constant-size ciphertexts. Theoret. Comput. Sci. 422, 15–38 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007 IEEE Symposium on Security and Privacy (S&P 2007), pp. 321–334. IEEE Computer Society (2007)Google Scholar
  7. 7.
    Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. In: Proceedings of 32nd Annual ACM Symposium on Theory of Computing, pp. 435–440 (2000)Google Scholar
  8. 8.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_13 CrossRefGoogle Scholar
  9. 9.
    Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_29 CrossRefGoogle Scholar
  10. 10.
    Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_8 CrossRefGoogle Scholar
  11. 11.
    Brakerski, Z., Cash, D., Tsabary, R., Wee, H.: Targeted homomorphic attribute-based encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 330–360. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_13 CrossRefGoogle Scholar
  12. 12.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 18, p. 111 (2011)Google Scholar
  13. 13.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS, 2011, pp. 97–106. IEEE Computer Society (2011)Google Scholar
  14. 14.
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_29 CrossRefGoogle Scholar
  15. 15.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_27 CrossRefGoogle Scholar
  16. 16.
    Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_28 CrossRefGoogle Scholar
  17. 17.
    Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: Proceedings of 2007 ACM Conference on Computer and Communications Security, CCS 2007, pp. 456–465. ACM (2007)Google Scholar
  18. 18.
    Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_31 CrossRefGoogle Scholar
  19. 19.
    Clear, M., McGoldrick, C.: Attribute-based fully homomorphic encryption with a bounded number of inputs. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 307–324. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31517-1_16 CrossRefGoogle Scholar
  20. 20.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45325-3_32 CrossRefGoogle Scholar
  21. 21.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 169–178. ACM (2009)Google Scholar
  22. 22.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of 40th Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 197–206. ACM (2008)Google Scholar
  23. 23.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_5 CrossRefGoogle Scholar
  24. 24.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Symposium on Theory of Computing Conference, STOC 2013, pp. 545–554. ACM (2013)Google Scholar
  25. 25.
    Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute based encryption. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 579–591. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70583-3_47 CrossRefGoogle Scholar
  26. 26.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data, pp. 89–98 (2006)Google Scholar
  27. 27.
    Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. IACR Cryptology ePrint Archive, 2011:272 (2011)Google Scholar
  28. 28.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_4 CrossRefGoogle Scholar
  29. 29.
    Li, M., Yu, S., Ren, K., Lou, W.: Securing personal health records in cloud computing: patient-centric and fine-grained data access control in multi-owner settings. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010. LNICST, vol. 50, pp. 89–106. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16161-2_6 CrossRefGoogle Scholar
  30. 30.
    López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of 44th Symposium on Theory of Computing Conference, STOC 2012, pp. 1219–1234 (2012)Google Scholar
  31. 31.
    Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst case complexity assumptions. In: FOCS 2002, pp. 356–365 (2002)Google Scholar
  32. 32.
    Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations. SIAM J. Comput. 42(3), 1364–1391 (2013)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_26 CrossRefGoogle Scholar
  34. 34.
    Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). IACR Cryptology ePrint Archive, 2009:359 (2009)Google Scholar
  35. 35.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: Proceedings of 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 333–342 (2009)Google Scholar
  36. 36.
    Regev, O.: On lattices, learning with errors, random linear codes and cryptography. In: Proceedings of 37th Annual ACM Symposium on Theory of Computing, STOC 2005, pp. 84–93 (2005)Google Scholar
  37. 37.
    Sahai, A., Waters, B.: Fuzzy identity based encryption. IACR Cryptology ePrint Archive, 2004:86 (2004)Google Scholar
  38. 38.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_5 CrossRefGoogle Scholar
  39. 39.
    Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_25 CrossRefGoogle Scholar
  40. 40.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_2 CrossRefGoogle Scholar
  41. 41.
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_4 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Veronika Kuchta
    • 1
  • Gaurav Sharma
    • 1
  • Rajeev Anand Sahu
    • 1
  • Olivier Markowitch
    • 1
  1. 1.Université libre de BruxellesBrusselsBelgium

Personalised recommendations