Advertisement

Cryptanalysis of Tran-Pang-Deng Verifiable Homomorphic Encryption

  • Shuaijianni Xu
  • Yan He
  • Liang Feng Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10779)

Abstract

Tran, Pang and Deng (AsiaCCS’16) proposed two verifiable computation schemes on outsourced encrypted data in the cloud computing scenario. One of them enables the delegation of linear functions and the other is constructed for multivariate quadratic polynomials. In the quadratic function case, it was claimed that their scheme is the first to guarantee both confidentiality of input data and authenticity of computations without using fully homomorphic encryption (FHE). In this paper we present a cryptanalysis which shows that their scheme cannot guarantee confidentiality of input data. We start with a technical lemma on pseudorandom functions that have a range of Abelian group and then provides a simple attack which allows the adversary to successfully break the scheme with probability close to 1.

Keywords

Cryptanalysis Verifiable homomorphic encryption Pseudorandom function 

Notes

Acknowledgment

The authors would like to thank the anonymous referees for the helpful comments. The research was supported by NSFC (No. 61602304) and Pujiang Talent Program (No. 16PJ1406500).

References

  1. 1.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14165-2_14 CrossRefGoogle Scholar
  2. 2.
    Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_2 CrossRefGoogle Scholar
  3. 3.
    Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 863–874. ACM Press (2013)Google Scholar
  4. 4.
    Barbosa, M., Farshim, P.: Delegatable homomorphic encryption with applications to secure outsourcing of computation. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 296–312. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27954-6_19 CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44448-3_41 CrossRefGoogle Scholar
  6. 6.
    Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_7 CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_10 CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_1 CrossRefGoogle Scholar
  9. 9.
    Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 336–352. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_21 CrossRefGoogle Scholar
  10. 10.
    Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 680–699. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_38 CrossRefGoogle Scholar
  11. 11.
    Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing homomorphic MACs for arithmetic circuits. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 538–555. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_31 CrossRefGoogle Scholar
  12. 12.
    Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applications. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_13 CrossRefGoogle Scholar
  13. 13.
    Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_40 CrossRefGoogle Scholar
  14. 14.
    Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_21 CrossRefGoogle Scholar
  15. 15.
    Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_26 CrossRefGoogle Scholar
  16. 16.
    Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_41 CrossRefGoogle Scholar
  17. 17.
    Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. In: CCS 2012, pp. 501–512 (2012)Google Scholar
  18. 18.
    Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted data. In: ACM CCS 2014, pp. 844–855. ACM (2014)Google Scholar
  19. 19.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_25 CrossRefGoogle Scholar
  20. 20.
    Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 301–320. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42045-0_16 CrossRefGoogle Scholar
  21. 21.
    Joo, C., Yun, A.: Homomorphic authenticated encryption secure against chosen-ciphertext attack. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 173–192. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45608-8_10 Google Scholar
  22. 22.
    Lai, J., Deng, R.H., Pang, H., Weng, J.: Verifiable computation on outsourced encrypted data. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 273–291. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11203-9_16 Google Scholar
  23. 23.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_16 CrossRefGoogle Scholar
  24. 24.
    Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_13 CrossRefGoogle Scholar
  25. 25.
    Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28914-9_24 CrossRefGoogle Scholar
  26. 26.
    Tran, N.H., Pang, H., Deng, R.H.: Efficient verifiable computation of linear and quadratic functions over encrypted data. In: Wang, X., Huang, X. (eds.) ASIACCS 2016, pp. 605–616. ACM (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science and TechnologyShanghaiTech UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations