Security Analysis of Improved Cubic UOV Signature Schemes

  • Kyung-Ah Shim
  • Namhun Koo
  • Cheol-Min Park
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10779)


At ICISC 2016, Duong et al. proposed two signature schemes based on multivariate quadratic equations, CSSv and SVSv by improving the security of the cubic UOV against Hashimoto’s attack. They claimed that the schemes were secure against all known attacks. We show that the schemes are insecure against key recovery attack using good keys and HighRank attacks. From a practical point of view, we are able to break their parameter at an 128-bit security level in 2 min by using the HighRank attack.


Equivalent key Key recovery attack using good keys Multivariate-quadratic scheme HighRank attack 


  1. 1.
    Battale, L., Faugere, J.C., Perret, L.: Solving polynoimal systems over finite fields: improved analysis of the hybrid approach. In: ISSAC 2012, pp. 67–74. ACM (2012)Google Scholar
  2. 2.
    Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  3. 3.
    Duong, D.H., Petzoldt, T.A., Wang, Y., Takagi, T.: Revisiting the Cubic UOV signature scheme, Cryptology ePrint Archive: Report 2016/1079Google Scholar
  4. 4.
    Duong, D.H., Petzoldt, A., Wang, Y., Takagi, T.: Revisiting the Cubic UOV signature scheme. In: Hong, S., Park, J.H. (eds.) ICISC 2016. LNCS, vol. 10157, pp. 223–238. Springer, Cham (2017). CrossRefGoogle Scholar
  5. 5.
    Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139, 61–88 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Faugère, J.-C., Gligoroski, D., Perret, L., Samardjiska, S., Thomae, E.: A polynomial-time key-recovery attack on MQQ cryptosystems. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 150–174. Springer, Heidelberg (2015). Google Scholar
  7. 7.
    Hashimoto, Y.: On the security of Cubic UOV. IACR eprint archive.
  8. 8.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). CrossRefGoogle Scholar
  9. 9.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). CrossRefGoogle Scholar
  10. 10.
    Nie, X., Liu, B., Xiong, H., Lu, G.: Cubic unbalance oil and vinegar signature scheme. In: Lin, D., Wang, X.F., Yung, M. (eds.) Inscrypt 2015. LNCS, vol. 9589, pp. 47–56. Springer, Cham (2016). Google Scholar
  11. 11.
    Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-bit long digital signatures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  12. 12.
    Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for HFEv-based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015 Part I. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015). CrossRefGoogle Scholar
  13. 13.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Thomae, E.: A generalization of the rainbow band separation attack and its applications to multivariate schemes, IACR Cryptology ePrint Archive (2012).
  15. 15.
    Thomae, E.: About the security of multivariate quadratic public key schemes, Dissertation thesis by Dipl. math. E. Thomae, RUB (2013)Google Scholar
  16. 16.
    Wolf, C., Preneel, B.: Large superfluous keys in \(\cal{M}\)ultivariate \(\cal{Q}\)uadratic asymmetric systems. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 275–287. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  17. 17.
    Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryptosystems: the new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  18. 18.
    Yasuda, T., Ding, J., Takagi, T., Sakurai, K.: A variant of rainbow with shorter secret key and faster signature generation. In: AsiaPKC, pp. 57–62 (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Integrated MathematicsNational Institute for Mathematical SciencesDaejeonRepublic of Korea

Personalised recommendations