Antimicrobial-Mediated Bacterial Suicide

  • Yuzhi Hong
  • Karl Drlica
  • Xilin ZhaoEmail author
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)


One way to restrict the emergence of new antibiotic resistance is to make antimicrobials more lethal. To achieve that, a better understanding of how antimicrobials kill pathogens is needed. In the last decade, the idea emerged that reactive oxygen species (ROS) play a role in the lethal action of diverse antimicrobials. Experimental support was obtained (1) by measuring the effects of antimicrobials on intracellular ROS accumulation using dyes that become fluorescent in the presence of ROS and (2) by altering antimicrobial lethality using mutations in genes known to protect from oxidative damage and by using chemicals expected to alter ROS levels. Moreover, an ROS-mediated death process, which is blocked by treatment with an ROS-mitigating agent, continues after removal of the original lethal stress that triggers the ROS cascade. Challenges to the idea that ROS contribute to antimicrobial lethality led to refinements and additional support. For example, a drop in ROS explains the paradoxical loss of killing seen at very high concentrations of quinolone antibacterials, and an increase in ROS accounts for most of thymineless death. A potential consequence of ROS-mediated antimicrobial action is reduced antimicrobial effectiveness when antioxidants are consumed as nutritional supplements during antimicrobial therapy. Another is novel cross-tolerance that has not been previously considered with combination therapies. Overall, the experimental observations fit well with the concept that bacteria respond to severe stress by building up ROS levels and self-destructing.



We thank the following for critical comments on the manuscript: Marila Gennaro and Bo Shopsin.


  1. 1.
    Dwyer D, Collins J, Walker G. Unraveling the physiological complexities of antibiotic lethality. Annu Rev Pharmacol Toxicol. 2015;55:9.1–9.20.Google Scholar
  2. 2.
    Zhao X, Drlica K. Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol. 2014;21:1–6.PubMedGoogle Scholar
  3. 3.
    Zhao X, Hong Y, Drlica K. Moving forward with ROS involvement in antimicrobial lethality. J Antimicrob Chemother. 2015;70:639–42.PubMedGoogle Scholar
  4. 4.
    Lewis K. Programmed death in bacteria. Microbiol Molecular Biol Rev. 2000;64:503–14.Google Scholar
  5. 5.
    Craig WA. Pharmacodynamics of antimicrobials: general concepts and applications. In: Nightingale C, Murakawa T, Ambrose P, editors. Antimicrobial pharmacodynamics in theory and clinical practice. New York: Marcel Dekker; 2002. p. 1–22.Google Scholar
  6. 6.
    Craig W. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26:1–12.PubMedGoogle Scholar
  7. 7.
    Miller C, Thomsen L, Gaggero C, Mosseri R, Ingmer H, Cohen S. SOS response induction by β-lactams and bacterial defense against antibiotic lethality. Science. 2004;305:1629–31.PubMedGoogle Scholar
  8. 8.
    Malik M, Hoatam G, Chavda K, Kerns R, Drlica K. Novel approach for comparing quinolones for emergence of resistant mutants during quinolone exposure. Antimicrob Agents Chemother. 2010;54:149–56.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Cirz R, Romesberg F. Induction and inhibition of ciprofloxacin resistance-conferring mutations in hypermutator bacteria. Antimicrob Agents Chemother. 2006;50:220–5.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin Infect Dis. 2001;33(Suppl 3):S147–S56.PubMedGoogle Scholar
  11. 11.
    Drlica K, Zhao X. Mutant selection window hypothesis updated. Clin Infect Dis. 2007;44:681–8.PubMedGoogle Scholar
  12. 12.
    Baym M, Lieberman T, Kelsic E, Chait R, Gross R, Yelin I, et al. Spatiotemporal microbial evolution on antibiotic landscapes. Science. 2016;353:1147–51.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Cui J, Liu Y, Wang R, Tong W, Drlica K, Zhao X. The mutant selection window demonstrated in rabbits infected with Staphylococcus aureus. J Infect Dis. 2006;194:1601–8.PubMedGoogle Scholar
  14. 14.
    Ni W, Song X, Cui J. Testing the mutant selection window hypothesis with Escherichia coli exposed to levofloxacin in a rabbit tissue cage infection model. Eur J Clin Microbiol Infect Dis. 2014;33:385–9.PubMedGoogle Scholar
  15. 15.
    Zhang B, Gu X, Li Y, Li X, Gu M, Zhang N, et al. In vivo evaluation of mutant selection window of cefquinome against Escherichia coli in piglet tissue-cage model. BMC Vet Res. 2014;10:297.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Xiong M, Wu X, Ye X, Zhang L, Zeng S, Huang Z, et al. Relationship between cefquinome PK/PD parameters and emergence of resistance of Staphylococcus aureus in rabbit tissue-cage infection model. Front Microbiol. 2016;7:874.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban N. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355:826–30.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang X, Zhao X. Contribution of oxidative damage to antimicrobial lethality. Antimicrob Agents Chemother. 2009;53:1395–402.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Dorsey-Oresto A, Lu T, Mosel M, Wang X, Salz T, Drlica K, et al. YihE kinase is a central regulator of programmed cell death in bacteria. Cell Rep. 2013;3:528–37.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Dwyer D, Belenky P, Yang J, MacDonald I, Martell J, Takahashi N, et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci U S A. 2014;111:E2100–E9.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Hong Y, Li L, Luan G, Drlica K, Zhao X. Contribution of reactive oxygen species to thymineless death in Escherichia coli. Nat Microbiol. 2017;(in press).Google Scholar
  22. 22.
    Burger R, Drlica K. Superoxide protects Escherichia coli from bleomycin mediated lethality. J Inorg Biochem. 2009;109:1273–7.Google Scholar
  23. 23.
    Mosel M, Li L, Drlica K, Zhao X. Superoxide-mediated protection of Escherichia coli from antimicrobials. Antimicrob Agents Chemother. 2013;57:5755–9.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu Y, Imlay J. Cell death from antibiotics without the involvement of reactive oxygen species. Science. 2013;339:1210–3.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Kohanski M, Dwyer D, Hayete B, Lawrence C, Collins J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810.PubMedGoogle Scholar
  26. 26.
    Ezraty B, Vergnes A, Banzhaf M, Duverger Y, Huguenot A, Brochado A, et al. Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science. 2013;340:1583–7.PubMedGoogle Scholar
  27. 27.
    Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci U S A. 1990;87(16):6181–5.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Oethinger M, Podglajen I, Kern WV, Levy SB. Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob Agents Chemother. 1998;42(8):2089–94.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Koutsolioutsou A, Martins EA, White DG, Levy SB, Demple B. A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (Serovar typhimurium). Antimicrob Agents Chemother. 2001;45(1):38–43.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Goswami M, Mangoli SH, Jawali N. Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli. Antimicrob Agents Chemother. 2006;50(3):949–54.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Goswami M, Mangoli SH, Jawali N. Effects of glutathione and ascorbic acid on streptomycin sensitivity of Escherichia coli. Antimicrob Agents Chemother. 2007;51(3):1119–22.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Albesa I, Becerra MC, Battan PC, Paez PL. Oxidative stress involved in the antibacterial action of different antibiotics. Biochem Biophys Res Commun. 2004;317(2):605–9.PubMedGoogle Scholar
  33. 33.
    Becerra MC, Albesa I. Oxidative stress induced by ciprofloxacin in Staphylococcus aureus. Biochem Biophys Res Commun. 2002;297(4):1003–7.PubMedGoogle Scholar
  34. 34.
    Wang X, Zhao X, Malik M, Drlica K. Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death. J Antimicrob Chemother. 2010;65:520–4.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Howard BM, Pinney RJ, Smith JT. 4-quinolone bactericidal mechanisms. Arzneimittelforschung/Drug Res. 1993;43:1125–9.Google Scholar
  36. 36.
    Chen C-R, Malik M, Snyder M, Drlica K. DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J Mol Biol. 1996;258:627–37.PubMedGoogle Scholar
  37. 37.
    Zhao X, Malik M, Chan N, Drlica-Wagner A, Wang J-Y, Li X, et al. Lethal action of quinolones with a temperature-sensitive dnaB replication mutant of Escherichia coli. Antimicrob Agents Chemother. 2006;50:362–4.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Malik M, Hussain S, Drlica K. Effect of anaerobic growth on quinolone lethality with Escherichia coli. Antimicrob Agents Chemother. 2007;51:28–34.PubMedGoogle Scholar
  39. 39.
    Wu X, Wang X, Drlica K, Zhao X. A toxin-antitoxin module in Bacillus subtiltis can both mitigate and amplify effects of lethal stress. PLoS One. 2011;6:e23909.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Li L, Hong Y, Luan G, Mosel M, Malik M, Drlica K, et al. Ribosomal elongation factor 4 promotes cell death associated with lethal stress. MBio. 2014;5:e01708.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Pogliano J, Lynch A, Belin D, Lin E, Beckwith J. Regulation of Escherichia coli cell envelope proteins involved in protein folding anddegradation by the Cpx two-component system. Genes Dev. 1997;11:1169–82.PubMedGoogle Scholar
  42. 42.
    Raivio T, Silhavy T. Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol. 1997;179:7724–33.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Kohanski M, Dwyer D, Wierzbowski J, Cottarel G, Collins J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell. 2008;135:679–90.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Raivio T, Silhavy T. Periplasmic stress and ECF sigma factors. Annu Rev Microbiol. 2001;55:591–624.PubMedGoogle Scholar
  45. 45.
    Wu Y, Vulic M, Keren I, Lewis K. Role of oxidative stress in persister tolerance. Antimicrob Agents Chemother. 2012;56:4922–6.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Kobayashi S, Ueda K, Komano T. The effects of metal ions on the DNA damage induced by hydrogen peroxide. Agric Biol Chem. 1990;54:69–76.PubMedGoogle Scholar
  47. 47.
    Grimsrud P, Xie H, Griffin T, Bernlohr D. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem. 2008;283:21837–41.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Girotti A. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res. 1998;39:1529–42.PubMedGoogle Scholar
  49. 49.
    Foti J, Devadoss B, Winkler J, Collins J, Walker G. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science. 2012;336:315–9.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Keren I, Wu Y, Inocencio J, Mulcahy L, Lewis K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science. 2013;339:1213–6.PubMedGoogle Scholar
  51. 51.
    Liu Y, Liu X, Qu Y, Wang X, Li L, Zhao X. Inhibitors of reactive oxygen accumulation delay and/or reduce the lethality of several antistaphylococcal agents. Antimicrob Agents Chemother. 2012;56:6048–58.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Imlay J. Diagnosing oxidative stress in bacteria: not as easy as you might think. Curr Opin Microbiol. 2015;24:124–31.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Mahoney TF, Silhavy TJ. The Cpx stress response confers resistance to some, but not all, bactericidal antibiotics. J Bacteriol. 2013;195:1869–74.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Korshunov S, Imlay J. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J Bacteriol. 2006;188:6326–34.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Gonzalez-Flecha B, Demple B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem. 1995;270(23):13681–7.PubMedGoogle Scholar
  56. 56.
    Messner K, Imlay J. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem. 2002;277:42563–71.PubMedGoogle Scholar
  57. 57.
    Korshunov S, Imlay J. Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol Microbiol. 2010;75:1389–401.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Dwyer D, Kohanski M, Hayete B, Collins J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol. 2007;3:91. Epub.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Baek S, Li A, Sassetti C. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 2011;(5):e1001065.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Thomas V, Kinkead L, Janssen A, Schaeffer C, Woods K, Lindgren J, et al. A dysfunctional tricarboxylic acid cycle enhances fitness of Staphylococcus epidermidis during β-lactam stress. MBio. 2013;4:e00437–13.PubMedGoogle Scholar
  61. 61.
    Davies B, Kohanski M, Simmons L, Winkler J, Collins J, Walker G. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol Cell. 2009;36:845–60.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Lobritz M, Belenky P, Porter C, Gutierrez A, Yang J, Schwarz E, et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci U S A. 2015;112:8173–80.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Meylan S, Porter C, Yang J, Belenky P, Gutierrez A, Lobritz M, et al. Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem Biol. 2017;24:195–206.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Park D, Akhtar M, Ansari A, Landick R, Kiley P. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet. 2013;9:e1003839.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Loui C, Chang A, Lu S. Role of the ArcAB two-component system in the resistance of Escherichia coli to reactive oxygen stress. BMC Microbiol. 2009;9:183.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Lu S, Killoran P, Fang F, Riley L. The global regulator ArcA controls resistance to reactive nitrogen and oxygen intermediates in Salmonella enterica serovar Enteritidis. Infect Immun. 2002;70:451–61.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Deponte M. Programmed cell death in protists. Biochim Biophys Acta. 2008;1783(7):1396–405.PubMedGoogle Scholar
  68. 68.
    Jimenez C, Capasso JM, Edelstein CL, Rivard CJ, Lucia S, Breusegem S, et al. Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J Exp Bot. 2009;60(3):815–28.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Bayles KW. Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol. 2014;12(1):63–9.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell. 2012;46(5):561–72.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Gautam S, Sharma A. Involvement of caspase-3-like protein in rapid cell death of Xanthomonas. Mol Microbiol. 2002;44(2):393–401.PubMedGoogle Scholar
  72. 72.
    Raju KK, Gautam S, Sharma A. Molecules involved in the modulation of rapid cell death in Xanthomonas. J Bacteriol. 2006;188(15):5408–16.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Crumplin GC, Smith JT. Nalidixic acid: an antibacterial paradox. Antimicrob Agents Chemother. 1975;8:251–61.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Malik M, Zhao X, Drlica K. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Mol Microbiol. 2006;61:810–25.PubMedGoogle Scholar
  75. 75.
    Hanawalt P. A balanced perspective on unbalanced growth and thymineless death. Front Microbiol. 2015;6:504.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Khodursky AGE, Hanawalt PC. Thymineless death lives on: new insights into a classic phenomenon. Annu Rev Microbiol. 2015;69:247–63.PubMedGoogle Scholar
  77. 77.
    Fonville N, Bates D, Hastings P, Hanawalt P, Rosenberg S. Role of RecA and the SOS response in thymineless death in Escherichia coli. PLoS Genet. 2010;6:e1000865.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Fonville N, Vaksman Z, DeNapoli J, Hastings P, Rosenberg S. Pathways of resistance to thymineless death in Escherichia coli and the function of UvrD. Genetics. 2011;189:23–36.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Sangurdekar D, Hamann B, Smirnov D, Srienc F, Hanawalt P, Khodursky A. Thymineless death is associated with loss of essential genetic information from the replication origin. Mol Microbiol. 2010;75:1455–67.PubMedGoogle Scholar
  80. 80.
    Kuong K, Kuzminov A. Disintegration of nascent replication bubbles during thymine starvation triggers RecA- and RecBCD-dependent replication origin destruction. J Biol Chem. 2012;287:23958–70.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Stivala L, Savio M, Carafoli F, Perucca P, Bianchi L, Maga G, et al. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J Biol Chem. 2001;276:22586–94.PubMedGoogle Scholar
  82. 82.
    Radimer K, Bindewald B, Hughes J, Ervin B, Swanson C, Picciano M. Dietary supplement use by US adults: data from the National Health and nutrition examination survey, 1999–2000. Am J Epidemiol. 2004;160:339–49.PubMedGoogle Scholar
  83. 83.
    Marathe S, Kumar R, Ajitkumar P, Nagaraja V. DC. Curcumin reduces the antimicrobial activity of ciprofloxacin against Salmonella typhimurium and Salmonella typhi. J Antimicrob Chemother. 2013;68:139–52.PubMedGoogle Scholar
  84. 84.
    Aires V, Delmas D. Common pathways in health benefit properties of RSV in cardiovascular diseases, cancers and degenerative pathologies. Curr Pharmaceut Biotech. 2015;16:219–44.Google Scholar
  85. 85.
    Granzotto A, Zatta P. Resveratrol and Alzheimer's disease: message in a bottle on red wine and cognition. Front Aging Neurosci. 2014;6:95.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Yang X, Li X, Ren J. From French paradox to cancer treatment: anti-cancer activities and mechanisms of resveratrol. Anti Cancer Agents Med Chem. 2014;14:806–25.Google Scholar
  87. 87.
    Liu Y, Zhou J, Qu Y, Yang X, Shi G, Wang X, et al. Resveratrol antagonizes antimicrobial lethality and stimulates ecovery of bacterial mutants. PLoS One. 2016;11:e0153023.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Brauner A, Fridman O, Gefen O, Balaban N. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14:320–30.PubMedGoogle Scholar
  89. 89.
    Fowler V, Sakoulas G, McIntyre L, Meka V, Arbeit R, Cabell C, et al. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J Infect Dis. 2004;190:1140–9.PubMedGoogle Scholar
  90. 90.
    Schweizer M, Furuno J, Sakoulas G, Johnson J, Harris A, Shardell M, et al. Increased mortality with accessory gene regulator (agr) dysfunction in Staphylococcus aureus among bacteremic patients. Antimicrob Agents Chemother. 2011;55:1082–7.PubMedGoogle Scholar
  91. 91.
    Kumar K, J Chen, Drlica K, Shopsin B. Dysfunction of the agr virulence regulator modulates antimicrobial-mediated killing of Staphylococcus aureus. MBio. 2017;in press.Google Scholar
  92. 92.
    Pader V, Hakim S, Painter K, Wigneshweraraj S, Clarke T, Edwards A. Staphylococcus aureus Inactivates daptomycin by releasing membrane phospholipids. Nat Microbiol. 2016;2:16194.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health SciencesNewarkUSA
  2. 2.Department of MicrobiologyBiochemistry, & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health SciencesNewarkUSA
  3. 3.State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen UniversityXiamenChina

Personalised recommendations