Antimicrobial Resistance in the 21st Century pp 299-339 | Cite as
Epidemiology of Bacterial Resistance
Abstract
Bacterial pathogens have developed resistance to antibacterial agents through mutation and acquisition of a panoply of resistance determinants. Outbreaks of resistant strains have caused significant morbidity and mortality in the affected patient populations when they occur. A variety of typing methods are used to track and monitor resistance, including newer molecular techniques such as whole genome sequencing. Resistance has traditionally been centered among hospitalized patients; however, resistant pathogens are being isolated in the community setting with increasing frequency. Some resistant strains have developed into epidemic clones that have spread worldwide, but the factors involved in this dissemination remain undefined.
Notes
Acknowledgment
I thank Charles R. Dean for assistance with information gathering.
References
- 1.CDC. Antibiotic resistance threats in the United States, 2013. 2014. Available from: https://www.cdc.gov/drugresistance/threat-report-2013/index.html.
- 2.Woodford N. Glycopeptide-resistant enterococci: a decade of experience. J Med Microbiol. 1998;47(10):849–62.PubMedGoogle Scholar
- 3.Oppenheim BA. The changing pattern of infection in neutropenic patients. J Antimicrob Chemother. 1998;41 Suppl D:7–11.PubMedGoogle Scholar
- 4.Gomez J, Simarro E, Banos V, Requena L, Ruiz J, Garcia F, et al. Six-year prospective study of risk and prognostic factors in patients with nosocomial sepsis caused by Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis. 1999;18(5):358–61.PubMedGoogle Scholar
- 5.Elting LS, Khardori N, Bodey GP, Fainstein V. Nosocomial infection caused by Xanthomonas maltophilia: a case-control study of predisposing factors. Infect Control Hosp Epidemiol. 1990;11(3):134–8.PubMedGoogle Scholar
- 6.Miller JH. Mutational specificity in Bacteria. Annu Rev Genet. 1983;17(1):215–38.PubMedGoogle Scholar
- 7.Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933–51.PubMedPubMedCentralGoogle Scholar
- 8.Podglajen I, Breuil J, Collatz E. Insertion of a novel DNA sequence, 1S1186, upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis. Mol Microbiol. 1994;12(1):105–14.PubMedGoogle Scholar
- 9.Poole K. Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr Pharm Biotechnol. 2002;3(2):77–98.PubMedGoogle Scholar
- 10.Livermore DM. Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis. 2003;36(Suppl 1):S11–23.PubMedGoogle Scholar
- 11.Piddock LJ. Mechanisms of fluoroquinolone resistance: an update 1994-1998. Drugs. 1999;58(Suppl 2):11–8.PubMedGoogle Scholar
- 12.Prystowsky J, Siddiqui F, Chosay J, Shinabarger DL, Millichap J, Peterson LR, et al. Resistance to linezolid: characterization of mutations in rRNA and comparison of their occurrences in vancomycin-resistant enterococci. Antimicrob Agents Chemother. 2001;45(7):2154–6.PubMedPubMedCentralGoogle Scholar
- 13.Tsiodras S, Gold HS, Sakoulas G, Eliopoulos GM, Wennersten C, Venkataraman L, et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet. 2001;358(9277):207–8.PubMedGoogle Scholar
- 14.Hall RM. Integrons and gene cassettes: hotspots of diversity in bacterial genomes. Ann N Y Acad Sci. 2012;1267:71–8.PubMedGoogle Scholar
- 15.Toulouse JL, Edens TJ, Alejaldre L, Manges AR, Pelletier JN. Integron-associated DfrB4, a previously uncharacterized member of the trimethoprim-resistant dihydrofolate reductase B family, is a clinically identified emergent source of antibiotic resistance. Antimicrob Agents Chemother. 2017;61(5)Google Scholar
- 16.Lee JJ, Kim M-N, Park KS, Lee JH, Karim AM, Park M, et al. Complex class 1 integron carrying qnrB62 and blaVIM-2 in a Citrobacter freundii clinical isolate. Antimicrob Agents Chemother. 2016;60(11):6937–40.PubMedPubMedCentralGoogle Scholar
- 17.KDO P, Campos JC, SCF S, Lezirovitz K, Seco BM, MDO P, et al. fosI is a new integron-associated gene cassette encoding reduced susceptibility to fosfomycin. Antimicrob Agents Chemother. 2016;60(1):686–8.Google Scholar
- 18.Livermore DM. β-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8(4):557–84.PubMedPubMedCentralGoogle Scholar
- 19.Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother. 2002;46(1):1–11.PubMedPubMedCentralGoogle Scholar
- 20.Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the foss of an outer membrane protein. Antimicrob Agents Chemother. 1997;41(3):563–9.PubMedPubMedCentralGoogle Scholar
- 21.Oliver A, Perez-Diaz JC, Coque TM, Baquero F, Canton R. Nucleotide sequence and characterization of a novel cefotaxime-hydrolyzing β-lactamase (CTX-M-10) isolated in Spain. Antimicrob Agents Chemother. 2001;45(2):616–20.PubMedPubMedCentralGoogle Scholar
- 22.Yoon EJ, Goussard S, Nemec A, Lambert T, Courvalin P, Grillot-Courvalin C. Origin in Acinetobacter gyllenbergii and dissemination of aminoglycoside-modifying enzyme AAC(6′)-Ih. J Antimicrob Chemother. 2016;71(3):601–6.PubMedGoogle Scholar
- 23.Yoon EJ, Goussard S, Touchon M, Krizova L, Cerqueira G, Murphy C, et al. Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3′)-VI. MBio. 2014;5(5):e01972-14.PubMedPubMedCentralGoogle Scholar
- 24.Spratt BG. Resistance to antibiotics mediated by target alterations. Science. 1994;264(5157):388–93.PubMedGoogle Scholar
- 25.Appelbaum PC. Resistance among Streptococcus pneumoniae: implications for drug selection. Clin Infect Dis. 2002;34(12):1613–20.PubMedGoogle Scholar
- 26.Stefani S, Agodi A. Molecular epidemiology of antibiotic resistance. Int J Antimicrob Agents. 2000;13(3):143–53.PubMedGoogle Scholar
- 27.Musser JM. Molecular population genetic analysis of emerged bacterial pathogens: selected insights. Emerg Infect Dis. 1996;2(1):1–17.PubMedPubMedCentralGoogle Scholar
- 28.Struelens MJ. Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin Microbiol Infect. 1996;2(1):2–11.PubMedGoogle Scholar
- 29.Tenover FC, Arbeit R, Archer G, Biddle J, Byrne S, Goering R, et al. Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus. J Clin Microbiol. 1994;32(2):407–15.PubMedPubMedCentralGoogle Scholar
- 30.Dijkshoorn L, Aucken HM, Gerner-Smidt P, Kaufmann ME, Ursing J, Pitt TL. Correlation of typing methods for Acinetobacter isolates from hospital outbreaks. J Clin Microbiol. 1993;31(3):702–5.PubMedPubMedCentralGoogle Scholar
- 31.Struelens MJ, Rost F, Deplano A, Maas A, Schwam V, Serruys E, et al. Pseudomonas aeruginosa and Enterobacteriaceae bacteremia after biliary endoscopy: an outbreak investigation using DNA macrorestriction analysis. Am J Med. 1993;95(5):489–98.PubMedGoogle Scholar
- 32.Wenzler E, Goff DA, Humphries R, Goldstein EJC. Anticipating the unpredictable: a review of antimicrobial stewardship and Acinetobacter infections. Infect Dis Ther. 2017;6(2):149–72.PubMedPubMedCentralGoogle Scholar
- 33.Gerner-Smidt P, Hyytiä-Trees E, Rota PA. Molecular epidemiology. In: Versalovic J, editor. Manual of clinical microbiology, vol. 1. 10th ed. Washington, D.C.: American Society for Microbiology Press; 2011.Google Scholar
- 34.Yoshida C, Franklin K, Konczy P, McQuiston JR, Fields PI, Nash JH, et al. Methodologies towards the development of an oligonucleotide microarray for determination of Salmonella serotypes. J Microbiol Methods. 2007;70(2):261–71.PubMedGoogle Scholar
- 35.Fitzgerald C, Collins M, van Duyne S, Mikoleit M, Brown T, Fields P. Multiplex, bead-based suspension array for molecular determination of common Salmonella serogroups. J Clin Microbiol. 2007;45(10):3323–34.PubMedPubMedCentralGoogle Scholar
- 36.Neal S, Beall B, Ekelund K, Henriques-Normark B, Jasir A, Johnson D, et al. International quality assurance study for characterization of Streptococcus pyogenes. J Clin Microbiol. 2007;45(4):1175–9.PubMedPubMedCentralGoogle Scholar
- 37.Facklam RF, Martin DR, Lovgren M, Johnson DR, Efstratiou A, Thompson TA, et al. Extension of the Lancefield classification for group A streptococci by addition of 22 new M protein gene sequence types from clinical isolates: emm103 to emm124. Clin Infect Dis. 2002;34(1):28–38.PubMedGoogle Scholar
- 38.Pai R, Gertz RE, Beall B. Sequential multiplex PCR approach for determining capsular serotypes of Streptococcus pneumoniae isolates. J Clin Microbiol. 2006;44(1):124–31.PubMedPubMedCentralGoogle Scholar
- 39.Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33(9):2233–9.PubMedPubMedCentralGoogle Scholar
- 40.Wiener J, Quinn JP, Bradford PA, Goering RV, Nathan C, Bush K, et al. Multiple antibiotic-resistant Klebsiella and Escherichia coli in nursing homes. JAMA. 1999;281(6):517–23.PubMedGoogle Scholar
- 41.Mayer LW. Use of plasmid profiles in epidemiologic surveillance of disease outbreaks and in tracing the transmission of antibiotic resistance. Clin Microbiol Rev. 1988;1(2):228–43.PubMedPubMedCentralGoogle Scholar
- 42.Grimont F, Grimont PA. Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur Microbiol. 1986;137b(2):165–75.PubMedGoogle Scholar
- 43.Blumberg HM, Rimland D, Kiehlbauch JA, Terry PM, Wachsmuth IK. Epidemiologic typing of Staphylococcus aureus by DNA restriction fragment length polymorphisms of rRNA genes: elucidation of the clonal nature of a group of bacteriophage-nontypeable, ciprofloxacin-resistant, methicillin-susceptible S. aureus isolates. J Clin Microbiol. 1992;30(2):362–9.PubMedPubMedCentralGoogle Scholar
- 44.Popovic T, Bopp CA, Olsvik O, Kiehlbauch JA. Ribotyping in molecular epidemiology. In: Persing DH, editor. Diagnostic molecular microbiology, principles and applications. Washington, D.C.: American Society for Microbiology; 1993. p. 573–83.Google Scholar
- 45.Bingen EH, Denamur E, Elion J. Use of ribotyping in epidemiological surveillance of nosocomial outbreaks. Clin Microbiol Rev. 1994;7(3):311–27.PubMedPubMedCentralGoogle Scholar
- 46.Jones CH, Tuckman M, Keeney D, Ruzin A, Bradford PA. Characterization and sequence analysis of extended-spectrum-β-lactamase-encoding genes from Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates collected during tigecycline phase 3 clinical trials. Antimicrob Agents Chemother. 2009;53(2):465–75.PubMedGoogle Scholar
- 47.Adler A, Miller-Roll T, Bradenstein R, Block C, Mendelson B, Parizade M, et al. A national survey of the molecular epidemiology of Clostridium difficile in Israel: the dissemination of the ribotype 027 strain with reduced susceptibility to vancomycin and metronidazole. Diagn Microbiol Infect Dis. 2015;83(1):21–4.PubMedGoogle Scholar
- 48.McAleese F, Murphy E, Babinchak T, Singh G, Said-Salim B, Kreiswirth B, et al. Use of ribotyping to retrospectively identify methicillin-resistant Staphylococcus aureus isolates from phase 3 clinical trials for tigecycline that are genotypically related to community-associated isolates. Antimicrob Agents Chemother. 2005;49(11):4521–9.PubMedPubMedCentralGoogle Scholar
- 49.Bouchet V, Huot H, Goldstein R. Molecular genetic basis of ribotyping. Clin Microbiol Rev. 2008;21(2):262–73.PubMedPubMedCentralGoogle Scholar
- 50.Fawley WN, Knetsch CW, MacCannell DR, Harmanus C, Du T, Mulvey MR, et al. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One. 2015;10(2):e0118150.PubMedPubMedCentralGoogle Scholar
- 51.van Belkum A. DNA fingerprinting of medically important microorganisms by use of PCR. Clin Microbiol Rev. 1994;7(2):174–84.PubMedPubMedCentralGoogle Scholar
- 52.Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990;18(24):7213–8.PubMedPubMedCentralGoogle Scholar
- 53.Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18(22):6531–5.PubMedPubMedCentralGoogle Scholar
- 54.Bustamante-Rengifo JA, Matta AJ, Pazos AJ, Bravo LE. Effect of treatment failure on the CagA EPIYA motif in Helicobacter pylori strains from Colombian subjects. World J Gastroenterol. 2017;23(11):1980–9.PubMedPubMedCentralGoogle Scholar
- 55.Miao J, Chen L, Wang J, Wang W, Chen D, Li L, et al. Evaluation and application of molecular genotyping on nosocomial pathogen-methicillin-resistant Staphylococcus aureus isolates in Guangzhou representative of Southern China. Microb Pathog. 2017;107:397–403.PubMedGoogle Scholar
- 56.Mobasherizadeh S, Shojaei H, Havaei SA, Mostafavizadeh K, Davoodabadi F, Khorvash F, et al. Application of the random amplified polymorphic DNA (RAPD) fingerprinting to analyze genetic variation in community associated-methicillin resistant Staphylococcus aureus (CA-MRSA) isolates in Iran. Global J Health Sci. 2016;8(8):53822.Google Scholar
- 57.Stern MJ, Ames GF, Smith NH, Robinson EC, Higgins CF. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell. 1984;37(3):1015–26.PubMedGoogle Scholar
- 58.Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19(24):6823–31.PubMedPubMedCentralGoogle Scholar
- 59.Healy M, Huong J, Bittner T, Lising M, Frye S, Raza S, et al. Microbial DNA typing by automated repetitive-sequence-based PCR. J Clin Microbiol. 2005;43(1):199–207.PubMedPubMedCentralGoogle Scholar
- 60.Ahmadi A, Salimizand H. Delayed identification of Acinetobacter baumannii during an outbreak owing to disrupted blaOXA-51-like by ISAba19. Int J Antimicrob Agents. 2017;50(1):119–22.PubMedGoogle Scholar
- 61.Zarfel G, Lipp M, Gurtl E, Folli B, Baumert R, Kittinger C. Troubled water under the bridge: screening of River Mur water reveals dominance of CTX-M harboring Escherichia coli and for the first time an environmental VIM-1 producer in Austria. Sci Total Environ. 2017;593-594:399–405.PubMedGoogle Scholar
- 62.van Belkum A, Scherer S, van Alphen L, Verbrugh H. Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 1998;62(2):275–293.Google Scholar
- 63.Hoffmaster AR, Fitzgerald CC, Ribot E, Mayer LW, Popovic T. Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States. Emerg Infect Dis. 2002;8(10):1111–6.PubMedPubMedCentralGoogle Scholar
- 64.Jagielski T, Minias A, van Ingen J, Rastogi N, Brzostek A, Żaczek A, et al. Methodological and clinical aspects of the molecular epidemiology of Mycobacterium tuberculosis and other mycobacteria. Clin Microbiol Rev. 2016;29(2):239–90.PubMedPubMedCentralGoogle Scholar
- 65.Armas F, Camperio C, Coltella L, Selvaggini S, Boniotti MB, Pacciarini ML, et al. Comparison of semi-automated commercial rep-PCR fingerprinting, spoligotyping, 12-locus MIRU-VNTR typing and single nucleotide polymorphism analysis of the embB gene as molecular typing tools for Mycobacterium bovis. J Med Microbiol. 2017;Google Scholar
- 66.Gawryszewska I, Żabicka D, Hryniewicz W, Sadowy E. Linezolid-resistant enterococci in Polish hospitals: species, clonality and determinants of linezolid resistance. Eur J Clin Microbiol Infect Dis. 2017;36(7):1279–86.PubMedPubMedCentralGoogle Scholar
- 67.Schwartz DC, Cantor CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984;37(1):67–75.PubMedGoogle Scholar
- 68.Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV. PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis. 2001;7(3):382–9.PubMedPubMedCentralGoogle Scholar
- 69.Zheng B, Dai Y, Liu Y, Shi W, Dai E, Han Y, et al. Molecular epidemiology and risk factors of Carbapenem-resistant Klebsiella pneumoniae infections in Eastern China. Front Microbiol. 2017;8:1061.PubMedPubMedCentralGoogle Scholar
- 70.Adler A, Glick R, Lifshitz Z, Carmeli Y. Does Acinetobacter baumannii serve as a source for blaNDM dissemination into Enterobacteriaceae in hospitalized patients? Microb Drug Resist. 2017;Google Scholar
- 71.Sit PS, Teh CS, Idris N, Sam IC, Syed Omar SF, Sulaiman H, et al. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infection and the molecular characteristics of MRSA bacteraemia over a two-year period in a tertiary teaching hospital in Malaysia. BMC Infect Dis. 2017;17(1):274.PubMedPubMedCentralGoogle Scholar
- 72.Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol. 2004;186(5):1518–30.PubMedPubMedCentralGoogle Scholar
- 73.Nadon C, Van Walle I, Gerner-Smidt P, Campos J, Chinen I, Concepcion-Acevedo J, et al. PulseNet International: Vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance. Euro Surveill. 2017, 22;(23):pii: 30544.Google Scholar
- 74.Lytsy B, Engstrand L, Gustafsson A, Kaden R. Time to review the gold standard for genotyping vancomycin-resistant enterococci in epidemiology: comparing whole-genome sequencing with PFGE and MLST in three suspected outbreaks in Sweden during 2013-2015. Infect Genet Evol. 2017;54:74–80.PubMedGoogle Scholar
- 75.Hall TA, Sampath R, Blyn LB, Ranken R, Ivy C, Melton R, et al. Rapid molecular genotyping and clonal complex assignment of Staphylococcus aureus isolates by PCR coupled to electrospray ionization-mass spectrometry. J Clin Microbiol. 2009;47(6):1733–41.PubMedPubMedCentralGoogle Scholar
- 76.Nicolas-Chanoine M-H, Bertrand X, Madec J-Y. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev. 2014;27(3):543–74.PubMedPubMedCentralGoogle Scholar
- 77.Peirano G, Pitout JDD. Molecular epidemiology of Escherichia coli producing CTX-M β-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents. 2010;35(4):316–21.PubMedGoogle Scholar
- 78.Peirano G, Bradford PA, Kazmierczak KM, Badal RE, Hackel M, Hoban DJ, et al. Global incidence of carbapenemase-producing Escherichia coli ST131. Emerg Infect Dis. 2014;20(11):1928–31.PubMedPubMedCentralGoogle Scholar
- 79.Banerjee R, Johnson JR. A new clone sweeps clean: the enigmatic emergence of Escherichia coli sequence type 131. Antimicrob Agents Chemother. 2014;58(9):4997–5004.PubMedPubMedCentralGoogle Scholar
- 80.Mathers AJ, Peirano G, Pitout JDD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 2015;28(3):565–91.PubMedPubMedCentralGoogle Scholar
- 81.Peirano G, Bradford PA, Kazmierczak KM, Chen L, Kreiswirth BN, Pitout JD. Importance of clonal complex 258 and IncFK2-like plasmids among a global collection of Klebsiella pneumoniae with blaKPC. Antimicrob Agents Chemother. 2017;61(4)Google Scholar
- 82.Baraniak A, Izdebski R, Zabicka D, Bojarska K, Gorska S, Literacka E, et al. Multiregional dissemination of KPC-producing Klebsiella pneumoniae ST258/ST512 genotypes in Poland, 2010-14. J Antimicrob Chemother. 2017;72(6):1610–6.PubMedGoogle Scholar
- 83.Kanamori H, Parobek CM, Juliano JJ, van Duin D, Cairns BA, Weber DJ, et al. A prolonged outbreak of KPC-3-producing Enterobacter cloacae and Klebsiella pneumoniae driven by multiple mechanisms of resistance transmission at a large academic burn center. Antimicrob Agents Chemother. 2017;61(2):pii: e01516-16.Google Scholar
- 84.Ruppe E, Olearo F, Pires D, Baud D, Renzi G, Cherkaoui A, et al. Clonal or not clonal? Investigating hospital outbreaks of KPC-producing Klebsiella pneumoniae with whole-genome sequencing. Clin Microbiol Infect. 2017;23(7):470–5.PubMedGoogle Scholar
- 85.Deng X, den Bakker HC, Hendriksen RS. Genomic epidemiology: whole-genome-sequencing-powered surveillance and outbreak investigation of foodborne bacterial pathogens. Annu Rev Food Sci Technol. 2016;7:353–74.PubMedGoogle Scholar
- 86.Humphries RM, Yang S, Kim S, Muthusamy VR, Russell D, Trout AM, et al. Duodenoscope-related outbreak of a carbapenem resistant Klebsiella pneumoniae identified using advanced molecular diagnostics. Clin Infect Dis. 2017;65(7):1159–66.PubMedGoogle Scholar
- 87.Archibald L, Phillips L, Monnet D, JE MG Jr, Tenover F, Gaynes R. Antimicrobial resistance in isolates from inpatients and outpatients in the United States: increasing importance of the intensive care unit. Clin Infect Dis. 1997;24(2):211–5.PubMedGoogle Scholar
- 88.Hetem DJ, Derde LP, Empel J, Mroczkowska A, Orczykowska-Kotyna M, Kozinska A, et al. Molecular epidemiology of MRSA in 13 ICUs from eight European countries. J Antimicrob Chemother. 2016;71(1):45–52.PubMedGoogle Scholar
- 89.Sader HS, Mendes RE, Streit JM, Flamm RK. Antimicrobial susceptibility trends among Staphylococcus aureus from United States hospitals: results from 7 years of the Ceftaroline (AWARE) Surveillance Program (2010-2016). Antimicrob Agents Chemother. 2017;61(9):pii: e01043-17.Google Scholar
- 90.Adam HJ, Baxter MR, Davidson RJ, Rubinstein E, Fanella S, Karlowsky JA, et al. Comparison of pathogens and their antimicrobial resistance patterns in paediatric, adult and elderly patients in Canadian hospitals. J Antimicrob Chemother. 2013;68(Suppl 1):i31–7.PubMedGoogle Scholar
- 91.ECDC. Surveillance atlas of infectious disease 2017. Available from: http://atlas.ecdc.europa.eu/public/index.aspx.
- 92.Lee NY, Song JH, Kim S, Peck KR, Ahn KM, Lee SI, et al. Carriage of antibiotic-resistant pneumococci among Asian children: a multinational surveillance by the Asian Network for Surveillance of Resistant Pathogens (ANSORP). Clin Infect Dis. 2001;32(10):1463–9.PubMedGoogle Scholar
- 93.Di Martino P, Livrelli V, Sirot D, Joly B, Darfeuille-Michaud A. A new fimbrial antigen harbored by CAZ-5/SHV-4-producing Klebsiella pneumoniae strains involved in nosocomial infections. Infect Immun 1996;64(6):2266–2273.Google Scholar
- 94.Jevons MP. “Celbenin” – resistant staphylococci. Br Med J. 1961;1(5219):124–5.PubMedCentralGoogle Scholar
- 95.Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev. 1997;10(4):781–91.PubMedPubMedCentralGoogle Scholar
- 96.Kosowska-Shick K, McGhee PL, Appelbaum PC. Affinity of ceftaroline and other β-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother. 2010;54(5):1670–7.PubMedPubMedCentralGoogle Scholar
- 97.Deurenberg RH, Stobberingh EE. The evolution of Staphylococcus aureus. Infect Genet Evol. 2008;8(6):747–63.PubMedGoogle Scholar
- 98.Zhang K, McClure J-A, Elsayed S, Conly JM. Novel Staphylococcal Cassette Chromosome mec type, tentatively designated type VIII, harboring Class A mec and type 4 ccr gene complexes in a Canadian epidemicxtrain of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(2):531–40.PubMedGoogle Scholar
- 99.Elements IWGCSCC. Classification of Staphylococcal Cassette Chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother. 2009;53(12):4961–7.Google Scholar
- 100.Chambers HF. The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis. 2001;7(2):178–82.PubMedPubMedCentralGoogle Scholar
- 101.Albrich WC, Harbarth S. Health-care workers: source, vector, or victim of MRSA? Lancet Infect Dis. 2008;8(5):289–301.PubMedGoogle Scholar
- 102.Adcock PM, Pastor P, Medley F, Patterson JE, Murphy TV. Methicillin-resistant Staphylococcus aureus in two child care centers. J Infect Dis. 1998;178(2):577–80.PubMedGoogle Scholar
- 103.Katayama Y, Robinson DA, Enright MC, Chambers HF. Genetic background affects stability of mecA in Staphylococcus aureus. J Clin Microbiol. 2005;43(5):2380–3.PubMedPubMedCentralGoogle Scholar
- 104.Paterson GK, Harrison EM, Holmes MA. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2014;22(1):42–7.PubMedPubMedCentralGoogle Scholar
- 105.Musser JM, Kapur V. Clonal analysis of methicillin-resistant Staphylococcus aureus strains from intercontinental sources: association of the mec gene with divergent phylogenetic lineages implies dissemination by horizontal transfer and recombination. J Clin Microbiol. 1992;30(8):2058–63.PubMedPubMedCentralGoogle Scholar
- 106.Reacher MH, Shah A, Livermore DM, Wale MCJ, Graham C, Johnson AP, et al. Bacteraemia and antibiotic resistance of its pathogens reported in England and Wales between 1990 and 1998: trend analysis. BMJ. 2000;320(7229):213–6.PubMedPubMedCentralGoogle Scholar
- 107.Johnson AP, Aucken HM, Cavendish S, Ganner M, Wale MCJ, Warner M, et al. Dominance of EMRSA-15 and -16 among MRSA causing nosocomial bacteraemia in the UK: analysis of isolates from the European Antimicrobial Resistance Surveillance System (EARSS). J Antimicrob Chemother. 2001;48(1):143–4.PubMedGoogle Scholar
- 108.Nakamura A, Miyake K, Misawa S, Kuno Y, Horii T, Hori S, et al. Association between antimicrobial consumption and clinical isolates of methicillin-resistant Staphylococcus aureus: a 14-year study. J Infect Chemother. 2012;18(1):90–5.PubMedGoogle Scholar
- 109.Ravensbergen SJ, Berends M, Stienstra Y, Ott A. High prevalence of MRSA and ESBL among asylum seekers in the Netherlands. PLoS One. 2017;12(4):e0176481.PubMedPubMedCentralGoogle Scholar
- 110.Saravolatz LD, Markowitz N, Arking L, Pohlod D, Fisher E. Methicillin-resistant Staphylococcus aureus. Epidemiologic observations during a community-acquired outbreak. Ann Intern Med. 1982;96(1):11–6.PubMedGoogle Scholar
- 111.CDC. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus – Minnesota and North Dakota, 1997-1999. MMWR Morb Mortal Wkly Rep 1999;48(32):707–710.Google Scholar
- 112.Ugarte Torres A, Chu A, Read R, MacDonald J, Gregson D, Louie T, et al. The epidemiology of Staphylococcus aureus carriage in patients attending inner city sexually transmitted infections and community clinics in Calgary, Canada. PLoS One. 2017;12(5):e0178557.PubMedPubMedCentralGoogle Scholar
- 113.Akpaka PE, Roberts R, Monecke S. Molecular characterization of antimicrobial resistance genes against Staphylococcus aureus isolates from Trinidad and Tobago. J Infect Public Health. 2017;10(3):316–23.PubMedGoogle Scholar
- 114.Zuma AV, Lima DF, Assef AP, Marques EA, Leao RS. Molecular characterization of methicillin-resistant Staphylococcus aureus isolated from blood in Rio de Janeiro displaying susceptibility profiles to non-beta-lactam antibiotics. Braz J Microbiol. 2017;48(2):237–41.PubMedGoogle Scholar
- 115.Lynch JP, Zhanel GG. Streptococcus pneumoniae: epidemiology, risk factors, and strategies for prevention. Semin Respir Crit Care. 2009;30(2):189–209.Google Scholar
- 116.Hansman D, Bullen M. A resistant pneumococcus. Lancet. 1967;290(7509):264–5.Google Scholar
- 117.Michel J, Dickman D, Greenberg Z, Bergner-Rabinowitz S. Serotype distribution of penicillin-resistant pneumococci and their susceptibilities to seven antimicrobial agents. Antimicrob Agents Chemother. 1983;23(3):397–401.PubMedPubMedCentralGoogle Scholar
- 118.Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J, Reingold A, et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N Engl J Med. 2006;354(14):1455–63.Google Scholar
- 119.Jabes D, Nachman S, Tomasz A. Penicillin-binding protein families: evidence for the clonal nature of penicillin resistance in clinical isolates of pneumococci. J Infect Dis. 1989;159(1):16–25.PubMedGoogle Scholar
- 120.Dowson CG, Coffey TJ, Kell C, Whiley RA. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Mol Microbiol. 1993;9(3):635–43.PubMedGoogle Scholar
- 121.Sibold C, Wang J, Henrichsen J, Hakenbeck R. Genetic relationships of penicillin-susceptible and -resistant Streptococcus pneumoniae strains isolated on different continents. Infect Immun. 1992;60(10):4119–26.PubMedPubMedCentralGoogle Scholar
- 122.Kristinsson KG, Hjalmarsdottir MA, Steingrimsson O. Increasing penicillin resistance in pneumococci in Iceland. Lancet. 1992;339(8809):1606–7.PubMedGoogle Scholar
- 123.Soares S, Kristinsson KG, Musser JM, Tomasz A. Evidence for the introduction of a multiresistant clone of serotype 6B Streptococcus pneumoniae from Spain to Iceland in the late 1980s. J Infect Dis. 1993;168(1):158–63.PubMedGoogle Scholar
- 124.Hjalmarsdottir MA, Kristinsson KG. Epidemiology of penicillin-non-susceptible pneumococci in Iceland, 1995-2010. J Antimicrob Chemother. 2014;69(4):940–6.PubMedGoogle Scholar
- 125.Kim L, McGee L, Tomczyk S, Beall B. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: a United States perspective. Clin Microbiol Rev. 2016;29(3):525–52.PubMedPubMedCentralGoogle Scholar
- 126.Prevention CfDCa. Active Bacterial Core Surveillance (ABCs) Report Emerging Infections Program Network Streptococcus pneumoniae, 2015. Available from: https://www.cdc.gov/abcs/reports-findings/survreports/spneu-types.html.
- 127.Leclercq R, Derlot E, Duval J, Courvalin P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med. 1988;319(3):157–61.PubMedGoogle Scholar
- 128.Sahm DF, Kissinger J, Gilmore MS, Murray PR, Mulder R, Solliday J, et al. In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother. 1989;33(9):1588–91.PubMedPubMedCentralGoogle Scholar
- 129.Acar J, Casewell M, Freeman J, Friis C, Goossens H. Avoparcin and virginiamycin as animal growth promoters: a plea for science in decision-making. Clin Microbiol Infect. 2000;6(9):477–82.PubMedGoogle Scholar
- 130.Kirst HA, Thompson DG, Nicas TI. Historical yearly usage of vancomycin. Antimicrob Agents Chemother. 1998;42(5):1303–4.PubMedPubMedCentralGoogle Scholar
- 131.Frieden TR, Munsiff SS, Low DE, Willey BM, Williams G, Faur Y, et al. Emergence of vancomycin-resistant enterococci in New York City. Lancet. 1993;342(8863):76–9.PubMedGoogle Scholar
- 132.Deshpande LM, Fritsche TR, Moet GJ, Biedenbach DJ, Jones RN. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis. 2007;58(2):163–70.PubMedGoogle Scholar
- 133.O'Driscoll T, Crank CW. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist. 2015;8:217–30.PubMedPubMedCentralGoogle Scholar
- 134.Baden LR, Critchley IA, Sahm DF, So W, Gedde M, Porter S, et al. Molecular characterization of vancomycin-resistant Enterococci repopulating the gastrointestinal tract following treatment with a novel glycolipodepsipeptide, ramoplanin. J Clin Microbiol. 2002;40(4):1160–3.PubMedPubMedCentralGoogle Scholar
- 135.Snyder GM, Thom KA, Furuno JP, Perencevich EN, Roghmann MC, Strauss SM, et al. Detection of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on the gowns and gloves of healthcare workers. Infect Control Hosp Epidemiol. 2008;29(7):583–9.PubMedPubMedCentralGoogle Scholar
- 136.Ghanem G, Hachem R, Jiang Y, Chemaly RF, Raad I. Outcomes for and risk factors associated with vancomycin-resistant Enterococcus faecalis and vancomycin-resistant Enterococcus faecium bacteremia in cancer patients. Infect Control Hosp Epidemiol. 2007;28(9):1054–9.PubMedGoogle Scholar
- 137.Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol. 2008;29(11):996–1011.Google Scholar
- 138.Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol. 2013;34:1):1–14.PubMedGoogle Scholar
- 139.Zhanel GG, Adam HJ, Baxter MR, Fuller J, Nichol KA, Denisuik AJ, et al. Antimicrobial susceptibility of 22746 pathogens from Canadian hospitals: results of the CANWARD 2007-11 study. J Antimicrob Chemother. 2013;68(Suppl 1):i7–22.PubMedGoogle Scholar
- 140.ECDC. European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2015. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). 2017.Google Scholar
- 141.Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45(4):1151–61.PubMedPubMedCentralGoogle Scholar
- 142.Bradford PA, Bratu S, Urban C, Visalli M, Mariano N, Landman D, et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin Infect Dis. 2004;39(1):55–60.PubMedGoogle Scholar
- 143.Navon-Venezia S, Leavitt A, Schwaber MJ, Rasheed JK, Srinivasan A, Patel JB, et al. First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob Agents Chemother. 2009;53(2):818–20.PubMedGoogle Scholar
- 144.Kazmierczak KM, Biedenbach DJ, Hackel M, Rabine S, de Jonge BLM, Bouchillon SK, et al. Global dissemination of blaKPC into bacterial species beyond Klebsiella pneumoniae and in vitro susceptibility to ceftazidime-avibactam and Aztreonam-avibactam. Antimicrob Agents Chemother. 2016;60(8):4490–500.PubMedPubMedCentralGoogle Scholar
- 145.Y-y H, D-x G, J-c C, H-w Z, Zhang R. Emergence of KPC-2-producing Pseudomonas aeruginosa sequence type 463 isolates in Hangzhou, China. Antimicrob Agents Chemother. 2015;59(5):2914–7.Google Scholar
- 146.Liang Y, Yin X, Zeng L, Chen S. Clonal replacement of epidemic KPC-producing Klebsiella pneumoniae in a hospital in China. BMC Infect Dis. 2017;17(1):363.PubMedPubMedCentralGoogle Scholar
- 147.Kim JO, Song SA, Yoon EJ, Shin JH, Lee H, Jeong SH, et al. Outbreak of KPC-2-producing Enterobacteriaceae caused by clonal dissemination of Klebsiella pneumoniae ST307 carrying an IncX3-type plasmid harboring a truncated Tn4401a. Diagn Microbiol Infect Dis. 2017;87(4):343–8.PubMedGoogle Scholar
- 148.Vubil D, Figueiredo R, Reis T, Canha C, Boaventura L, GJ DAS. Outbreak of KPC-3-producing ST15 and ST348 Klebsiella pneumoniae in a Portuguese hospital. Epidemiol Infect. 2017;145(3):595–9.PubMedGoogle Scholar
- 149.Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Henderson DK, Palmore TN, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med. 2012;4(148):148ra16-ra16.Google Scholar
- 150.Abdallah M, Olafisoye O, Cortes C, Urban C, Landman D, Ghitan M, et al. Rise and fall of KPC-producing Klebsiella pneumoniae in New York City. J Antimicrob Chemother. 2016;71(10):2945–8.PubMedGoogle Scholar
- 151.Walther-Rasmussen J, Høiby N. Class A carbapenemases. J Antimicrob Chemother. 2007;60(3):470–82.PubMedGoogle Scholar
- 152.Hecker SJ, Reddy KR, Totrov M, Hirst GC, Lomovskaya O, Griffith DC, et al. Discovery of a cyclic boronic acid beta-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases. J Med Chem. 2015;58(9):3682–92.PubMedGoogle Scholar
- 153.Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13(9):785–96.PubMedPubMedCentralGoogle Scholar
- 154.Pitout JDD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59(10):5873–84.PubMedPubMedCentralGoogle Scholar
- 155.Chen L, Chavda KD, DeLeo FR, Bryant KA, Jacobs MR, Bonomo RA, et al. Genome sequence of a Klebsiella pneumoniae sequence type 258 isolate with prophage-encoded K. pneumoniae carbapenemase. Genome Announc. 2015;3(3)Google Scholar
- 156.Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–54.PubMedPubMedCentralGoogle Scholar
- 157.Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014;20(9):821–30.PubMedGoogle Scholar
- 158.Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10(9):597–602.PubMedPubMedCentralGoogle Scholar
- 159.Kazmierczak KM, Rabine S, Hackel M, McLaughlin RE, Biedenbach DJ, Bouchillon SK, et al. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60(2):1067–78.PubMedPubMedCentralGoogle Scholar
- 160.Bocanegra-Ibarias P, Garza-González E, Morfín-Otero R, Barrios H, Villarreal-Treviño L, Rodríguez-Noriega E, et al. Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in Mexico. PLoS One. 2017;12(6):e0179651.PubMedPubMedCentralGoogle Scholar
- 161.Bosch T, Lutgens SPM, Hermans MHA, Wever PC, Schneeberger PM, Renders NHM, et al. An outbreak of NDM-1 producing Klebsiella pneumoniae in a Dutch hospital with interspecies transfer of the resistance plasmid and unexpected occurrence in unrelated healthcare centers. J Clin Microbiol. 2017;Google Scholar
- 162.Yu J, Wang Y, Chen Z, Zhu X, Tian L, Li L, et al. Outbreak of nosocomial NDM-1-producing Klebsiella pneumoniae ST1419 in a neonatal unit. J Global Antimicrobial Resist. 2017;8:135–9.Google Scholar
- 163.Lin J-N, Chang L-L, Lai C-H, Huang Y-H, Chen W-F, Yang C-H, et al. High prevalence of fluoroquinolone-nonsusceptible Streptococcus pyogenes emm12 in Taiwan. Diagn Microbiol Infect Dis. 2015;83(2):187–92.PubMedGoogle Scholar
- 164.McCurdy SP, Jones RN, Mendes RE, Puttagunta S, Dunne MW. In vitro activity of Dalbavancin against drug-resistant Staphylococcus aureus isolates from a global surveillance program. Antimicrob Agents Chemother. 2015;59(8):5007–9.PubMedPubMedCentralGoogle Scholar
- 165.Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(11):1288–301.PubMedGoogle Scholar
- 166.Bidell MR, Palchak M, Mohr J, Lodise TP. Fluoroquinolone and third-generation-cephalosporin resistance among hospitalized patients with urinary tract infections due to Escherichia coli: do rates vary by hospital characteristics and geographic region? Antimicrob Agents Chemother. 2016;60(5):3170–3.PubMedPubMedCentralGoogle Scholar
- 167.Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev. 2009;22(4):664–89.PubMedPubMedCentralGoogle Scholar
- 168.Wu JJ, Ko WC, Wu HM, Yan JJ. Prevalence of Qnr determinants among bloodstream isolates of Escherichia coli and Klebsiella pneumoniae in a Taiwanese hospital, 1999-2005. J Antimicrob Chemother. 2008;61(6):1234–9.PubMedGoogle Scholar
- 169.Strahilevitz J, Engelstein D, Adler A, Temper V, Moses AE, Block C, et al. Changes in qnr prevalence and fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae and Enterobacter spp. collected from 1990 to 2005. Antimicrob Agents Chemother. 2007;51(8):3001–3.PubMedPubMedCentralGoogle Scholar
- 170.Castanheira M, Costello SE, Jones RN, Mendes RE, editors. Prevalence of aminoglycoside resistance genes among contemporary Gram-negative resistant isolates collected worldwide. 25th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID); 2015 April 25–28; Copenhagen.Google Scholar
- 171.Miro E, Grunbaum F, Gomez L, Rivera A, Mirelis B, Coll P, et al. Characterization of aminoglycoside-modifying enzymes in Enterobacteriaceae clinical strains and characterization of the plasmids implicated in their diffusion. Microb Drug Resist. 2013;19(2):94–9.PubMedGoogle Scholar
- 172.Almaghrabi R, Clancy CJ, Doi Y, Hao B, Chen L, Shields RK, et al. Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on Plazomicin and other agents. Antimicrob Agents Chemother. 2014;58(8):4443–51.PubMedPubMedCentralGoogle Scholar
- 173.Bell J, Andersson P, Jones RN, Turnidge J, editors. 16S rRNA methylase containing Enterobacteriaceae in the SENTRY Asia-Pacific region frequently harbour plasmid-mediated quinolone resistance and CTX-M types. European Congress of Clinical Microbiology and Infectious Diseases (ECCMID); 2010 April 10–13; Vienna.Google Scholar
- 174.Wachino J, Arakawa Y. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updat. 2012;15(3):133–48.PubMedGoogle Scholar
- 175.Bercot B, Poirel L, Nordmann P. Updated multiplex polymerase chain reaction for detection of 16S rRNA methylases: high prevalence among NDM-1 producers. Diagn Microbiol Infect Dis. 2011;71(4):442–5.PubMedGoogle Scholar
- 176.Poirel L, Savov E, Nazli A, Trifonova A, Todorova I, Gergova I, et al. Outbreak caused by NDM-1- and RmtB-producing Escherichia coli in Bulgaria. Antimicrob Agents Chemother. 2014;58(4):2472–4.PubMedPubMedCentralGoogle Scholar
- 177.Biswas S, Brunel J-M, Dubus J-C, Reynaud-Gaubert M, Rolain J-M. Colistin: an update on the antibiotic of the 21st century. Expert Rev Anti-Infect Ther. 2012;10(8):917–34.PubMedGoogle Scholar
- 178.Bradford PA, Kazmierczak KM, Biedenbach DJ, Wise MG, Hackel M, Sahm DF. Correlation of β-lactamase production and Colistin resistance among Enterobacteriaceae isolates from a global surveillance program. Antimicrob Agents Chemother. 2016;60(3):1385–92.PubMedCentralGoogle Scholar
- 179.Ah Y-M, Kim A-J, Lee J-Y. Colistin resistance in Klebsiella pneumoniae. Int J Antimicrob Agents. 2014;44(1):8–15.PubMedGoogle Scholar
- 180.Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.PubMedGoogle Scholar
- 181.Cui M, Zhang J, Gu Z, Li R, EW-c C, Yan M, et al. Prevalence and molecular characterization of mcr-1-positive Salmonella strains recovered from clinical specimens in China. Antimicrob Agents Chemother. 2017;61(5)Google Scholar
- 182.Huang TD, Bogaerts P, Berhin C, Hoebeke M, Bauraing C, Glupczynski Y. Increasing proportion of carbapenemase-producing Enterobacteriaceae and emergence of a MCR-1 producer through a multicentric study among hospital-based and private laboratories in Belgium from September to November 2015. Euro Surveill. 2017;22(19).Google Scholar
- 183.Mohsin J, Pal T, Petersen JE, Darwish D, Ghazawi A, Ashraf T, et al. Plasmid-mediated Colistin resistance gene mcr-1 in an Escherichia coli ST10 bloodstream isolate in the Sultanate of Oman. Microb Drug Resist. 2017;Google Scholar
- 184.Newton-Foot M, Snyman Y, Maloba MRB, Whitelaw AC. Plasmid-mediated mcr-1 colistin resistance in Escherichia coli and Klebsiella spp. clinical isolates from the Western Cape region of South Africa. Antimicrob Resist Infect Control. 2017;6:78.PubMedPubMedCentralGoogle Scholar
- 185.McGann P, Snesrud E, Maybank R, Corey B, Ong AC, Clifford R, et al. Escherichia coli Harboring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the United States. Antimicrob Agents Chemother. 2016;60(7):4420–1.PubMedPubMedCentralGoogle Scholar
- 186.Castanheira M, Griffin MA, Deshpande LM, Mendes RE, Jones RN, Flamm RK. Detection of mcr-1 among Escherichia coli clinical isolates collected worldwide as part of the SENTRY antimicrobial surveillance program in 2014 and 2015. Antimicrob Agents Chemother. 2016;60(9):5623–4.PubMedPubMedCentralGoogle Scholar
- 187.Terveer EM, Nijhuis RHT, Crobach MJT, Knetsch CW, Veldkamp KE, Gooskens J, et al. Prevalence of colistin resistance gene (mcr-1) containing Enterobacteriaceae in feces of patients attending a tertiary care hospital and detection of a mcr-1 containing, colistin susceptible E. coli. PLoS One. 2017;12(6):e0178598.PubMedPubMedCentralGoogle Scholar
- 188.Chiou C-S, Chen Y-T, Wang Y-W, Liu Y-Y, Kuo H-C, Tu Y-H, et al. Dissemination of mcr-1-carrying plasmids among Colistin-resistant Salmonella strains from humans and food-producing animals in Taiwan. Antimicrob Agents Chemother. 2017;61(7)Google Scholar
- 189.El Garch F, Sauget M, Hocquet D, LeChaudee D, Woehrle F, Bertrand X. mcr-1 is borne by highly diverse Escherichia coli isolates since 2004 in food-producing animals in Europe. Clin Microbiol Infect 2017;23(1):51.e1–51.e4.Google Scholar
- 190.Roschanski N, Falgenhauer L, Grobbel M, Guenther S, Kreienbrock L, Imirzalioglu C, et al. Retrospective survey of mcr-1 and mcr-2 in German pig-fattening farms, 2011-2012. Int J Antimicrob Agents. 2017;50(2):266–71.PubMedGoogle Scholar
- 191.Zhou H-W, Zhang T, Ma J-H, Fang Y, Wang H-Y, Huang Z-X, et al. Occurrence of plasmid- and chromosome-carried mcr-1 in waterborne Enterobacteriaceae in China. Antimicrob Agents Chemother. 2017;61(8)Google Scholar
- 192.Hembach N, Schmid F, Alexander J, Hiller C, Rogall ET, Schwartz T. Occurrence of the mcr-1 colistin resistance gene and other clinically relevant antibiotic resistance genes in microbial populations at different municipal wastewater treatment plants in Germany. Front Microbiol. 2017;8:1282.PubMedPubMedCentralGoogle Scholar
- 193.Ovejero CM, Delgado-Blas JF, Calero-Caceres W, Muniesa M, Gonzalez-Zorn B. Spread of mcr-1-carrying Enterobacteriaceae in sewage water from Spain. J Antimicrob Chemother. 2017;72(4):1050–3.PubMedPubMedCentralGoogle Scholar
- 194.Kizny Gordon AE, Mathers AJ, Cheong EYL, Gottlieb T, Kotay S, Walker AS, et al. The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections-a systematic review of the literature. Clin Infect Dis. 2017;64(10):1435–44.PubMedGoogle Scholar
- 195.Hashida K, Shiomori T, Hohchi N, Ohkubo J, Ohbuchi T, Mori T, et al. Nasopharyngeal Streptococcus pneumoniae carriage in Japanese children attending day-care centers. Int J Pediatr Otorhinolaryngol. 2011;75(5):664–9.PubMedGoogle Scholar
- 196.Dueger EL, Asturias EJ, Matheu J, Gordillo R, Torres O, Halsey N. Increasing penicillin and trimethoprim-sulfamethoxazole resistance in nasopharyngeal Streptococcus pneumoniae isolates from Guatemalan children, 2001-2006. Int J Infect Dis. 2008;12(3):289–97.PubMedGoogle Scholar
- 197.Braga EDV, Aguiar-Alves F, de Freitas MFN, de e Silva MO, Correa TV, Snyder RE, et al. High prevalence of Staphylococcus aureus and methicillin-resistant S. aureus colonization among healthy children attending public daycare centers in informal settlements in a large urban center in Brazil. BMC Infect Dis. 2014;14Google Scholar
- 198.Rasmussen BA, Bradford PA, Quinn JP, Wiener J, Weinstein RA, Bush K. Genetically diverse ceftazidime-resistant isolates from a single center: biochemical and genetic characterization of TEM-10 β-lactamases encoded by different nucleotide sequences. Antimicrob Agents Chemother. 1993;37(9):1989–92.PubMedPubMedCentralGoogle Scholar
- 199.Bradford PA, Urban C, Jaiswal A, Mariano N, Rasmussen BA, Projan SJ, et al. SHV-7, a novel cefotaxime-hydrolyzing β-lactamase, identified in Escherichia coli isolates from hospitalized nursing home patients. Antimicrob Agents Chemother. 1995;39(4):899–905.PubMedPubMedCentralGoogle Scholar
- 200.Valenza G, Nickel S, Pfeifer Y, Pietsch M, Voigtlander E, Lehner-Reindl V, et al. Prevalence and genetic diversity of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in nursing homes in Bavaria, Germany. Vet Microbiol. 2017;200:138–41.PubMedGoogle Scholar
- 201.Trick WE, Weinstein RA, DeMarais PL, Kuehnert MJ, Tomaska W, Nathan C, et al. Colonization of skilled-care facility residents with antimicrobial-resistant pathogens. J Am Geriatr Soc. 2001;49(3):270–6.PubMedGoogle Scholar
- 202.Jiménez-Truque N, Saye EJ, Soper N, Saville BR, Thomsen I, Edwards KM, et al. Longitudinal assessment of colonization with Staphylococcus aureus in healthy collegiate athletes. J Pediatric Infect Dis Soc. 2016;5(2):105–13.PubMedGoogle Scholar
- 203.Lindenmayer JM, Schoenfeld S, O'Grady R, Carney JK. Methicillin-resistant Staphylococcus aureus in a high school wrestling team and the surrounding community. Arch Intern Med. 1998;158(8):895–9.PubMedGoogle Scholar
- 204.Begier EM, Frenette K, Barrett NL, Mshar P, Petit S, Boxrud DJ, et al. A high-morbidity outbreak of methicillin-resistant Staphylococcus aureus among players on a college football team, facilitated by cosmetic body shaving and turf burns. Clin Infect Dis. 2004;39(10):1446–53.PubMedPubMedCentralGoogle Scholar
- 205.CDC. Methicillin-resistant Staphylococcus aureus infections among competitive sports participants–Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000–2003. MMWR. 2003;52:793–5.Google Scholar
- 206.Young LM, Motz VA, Markey ER, Young SC, Beaschler RE. Recommendations for best disinfectant practices to reduce the spread of infection via wrestling mats. J Athl Train. 2017;52(2):82–8.PubMedPubMedCentralGoogle Scholar
- 207.Dao MN, Laurene M, Elizabeth B. Recurring methicillin-resistant Staphylococcus aureus infections in a football team. Emerg Infect Dis J. 2005;11(4):526.Google Scholar
- 208.Buss BF, Mueller SW, Theis M, Keyser A, Safranek TJ. Population-based estimates of methicillin-resistant Staphylococcus aureus (MRSA) infections among high school athletes – Nebraska, 2006-2008. J Sch Nurs. 2009;25(4):282–91.PubMedGoogle Scholar
- 209.McKenna M. National Geographic 2015. Available from: http://phenomena.nationalgeographic.com/2015/10/15/mrsa-football/.
- 210.Perez AJ. Giants TE. Daniel Fells to have 10th surgery to treat MRSA USA Today 2015. Available from: https://www.usatoday.com/story/sports/nfl/giants/2015/12/07/daniel-fells-mrsa-surgery-new-york-giants-nfl/76915784/.
- 211.Kazakova SV, Hageman JC, Matava M, Srinivasan A, Phelan L, Garfinkel B, et al. A clone of methicillin-resistant Staphylococcus aureus among professional football players. N Engl J Med. 2005;352(5):468–75.PubMedPubMedCentralGoogle Scholar
- 212.Kantele A, Laaveri T, Mero S, Vilkman K, Pakkanen SH, Ollgren J, et al. Antimicrobials increase travelers’ risk of colonization by extended-spectrum betalactamase-producing Enterobacteriaceae. Clin Infect Dis. 2015;60(6):837–46.PubMedPubMedCentralGoogle Scholar
- 213.Leangapichart T, Rolain JM, Memish ZA, Al-Tawfiq JA, Gautret P. Emergence of drug resistant bacteria at the Hajj: a systematic review. Travel Med Infect Dis. 2017;Google Scholar
- 214.Katz AR, Komeya AY, Kirkcaldy RD, Whelen AC, Soge OO, Papp JR, et al. Cluster of Neisseria gonorrhoeae isolates with high-level azithromycin resistance and decreased ceftriaxone susceptibility, Hawaii, 2016. Clin Infect Dis. 2017;Google Scholar
- 215.Kim JS, Kim JJ, Kim SJ, Jeon S-E, Seo KY, Choi J-K, et al. Outbreak of ciprofloxacin-resistant Shigella sonnei associated with travel to Vietnam, Republic of Korea. Emerg Infect Dis. 2015;21(7):1247–50.PubMedPubMedCentralGoogle Scholar
- 216.Post A, Martiny D, van Waterschoot N, Hallin M, Maniewski U, Bottieau E, et al. Antibiotic susceptibility profiles among Campylobacter isolates obtained from international travelers between 2007 and 2014. Eur J Clin Microbiol Infect Dis. 2017;Google Scholar
- 217.Dave J, Warburton F, Freedman J, de Pinna E, Grant K, Sefton A, et al. What were the risk factors and trends in antimicrobial resistance for enteric fever in London 2005-2012? J Med Microbiol. 2017;Google Scholar
- 218.Reinheimer C, Kempf VAJ, Jozsa K, Wichelhaus TA, Hogardt M, O’Rourke F, et al. Prevalence of multidrug-resistant organisms in refugee patients, medical tourists and domestic patients admitted to a German university hospital. BMC Infect Dis. 2017;17:17.PubMedPubMedCentralGoogle Scholar