Adhesive Indentation of an Elastic Half-Space

Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 91)

Abstract

In this chapter, we study the axisymmetric problem of the so-called JKR-type adhesive indentation of a transversely isotropic elastic half-space. Explicit formulas are given for self-similar indenters. In the case of a paraboloidal indenter, the Johnson–Kendall–Roberts (JKR) theory is considered in detail. Approximate solutions are presented in the case of an annular area of contact.

References

  1. 1.
    Argatov, I., Li, Q., Pohrt, R., Popov, V.L.: Johnson-Kendall-Roberts adhesive contact for a toroidal indenter. Proc. R. Soc. A 472, 20160218 (2016). (14 pp)CrossRefGoogle Scholar
  2. 2.
    Argatov, I.I., Nazarov, S.A.: The pressure of a narrow ring-shaped punch on an elastic half-space. J. Appl. Math. Mech. 60, 799–812 (1996)CrossRefGoogle Scholar
  3. 3.
    Barber, J.R.: Indentation of the semi-infinite elastic solid by a concave rigid punch. J. Elast. 6, 149–159 (1976)CrossRefGoogle Scholar
  4. 4.
    Borodich, F.M.: The Hertz-type and adhesive contact problems for depth-sensing indentation. Adv. Appl. Mech. 47, 225–366 (2014)Google Scholar
  5. 5.
    Barthel, E., Perriot, A.: Adhesive contact to a coated elastic substrate. J. Phys. D: Appl. Phys. 40, 1059–1067 (2007)CrossRefGoogle Scholar
  6. 6.
    Borodich, F.M., Galanov, B.A.: Non-direct estimations of adhesive and elastic properties of materials by depth-sensing indentation. Proc. R. Soc. A 464, 2759–2776 (2008)CrossRefGoogle Scholar
  7. 7.
    Borodich, F.M., Galanov, B.A., Gorb, S.N., Prostov, M.Y., Prostov, Y.I., Suarez-Alvarez, M.M.: Evaluation of adhesive and elastic properties of materials by depth-sensing indentation of spheres. Appl. Phys. A 108, 13–18 (2012)CrossRefGoogle Scholar
  8. 8.
    Borodich, F.M., Galanov, B.A., Gorb, S.N., Prostov, M.Y., Prostov, Y.I., Suarez-Alvarez, M.M.: Evaluation of adhesive and elastic properties of polymers by the BG method. Macromol. React. Eng. 7, 555–563 (2013)CrossRefGoogle Scholar
  9. 9.
    Borodich, F.M., Galanov, B.A., Keer, L.M., Suarez-Alvarez, M.M.: The JKR-type adhesive contact problems for transversely isotropic elastic solids. Mech. Mater. 75, 34–44 (2014)CrossRefGoogle Scholar
  10. 10.
    Borodich, F.M., Galanov, B.A., Suarez-Alvarez, M.M.: The JKR-type adhesive contact problems for power-law shaped axisymmetric punches. J. Mech. Phys. Solids 68, 14–32 (2014)CrossRefGoogle Scholar
  11. 11.
    Crosby, A.J., Shull, K.R.: Adhesive failure analysis of pressure-sensitive adhesives. J. Polym. Sci. Polym. Phys. 37, 3455–3472 (1999)CrossRefGoogle Scholar
  12. 12.
    Derjaguin, B.V., Muller, V.M., Toporov, Y.P.J.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)CrossRefGoogle Scholar
  13. 13.
    Eskandari-Ghadi, M., Pak, R.Y.S., Ardeshir-Behrestaghi, A.: Vertical action of a concentric multi-annular punch on a transversely isotropic elastic half-space. J. Appl. Mech. 79(4), 041008 (2012). (9 pp)CrossRefGoogle Scholar
  14. 14.
    Espinasse, L., Keer, L., Borodich, F., Yu, H., Wang, Q.J.: A note on JKR and DMT theories of contact on a transversely isotropic half-space. Mech. Mater. 42, 477–480 (2010)CrossRefGoogle Scholar
  15. 15.
    Griffith, A.A.: The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. 221A, 163–198 (1920)Google Scholar
  16. 16.
    Il’in, A.M.: Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. vol. 102. Translations of Mathematical Monographs. American Mathematical Society, Providence (1992)Google Scholar
  17. 17.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. A 324, 301–313 (1971)CrossRefGoogle Scholar
  18. 18.
    Kendall, K.: The adhesion and surface energy of elastic solids. J. Phys. D: Appl. Phys. 4, 1186–1195 (1971)CrossRefGoogle Scholar
  19. 19.
    Maugis, D.: Adhesion of spheres: The JKR-DMT transition using a dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)CrossRefGoogle Scholar
  20. 20.
    Maugis, D.: Extension of the Johnson-Kendall-Roberts theory of the elastic contact of spheres to large contact radii. Langmuir 11, 679–682 (1995)CrossRefGoogle Scholar
  21. 21.
    Maugis, D.: Contact, Adhesion and Rupture of Elastic Solids. Springer, Berlin (2000)CrossRefGoogle Scholar
  22. 22.
    Maugis, D., Barquins, M.: Adhesive contact of a conical punch on an elastic half-space. J. Physique Lett. 42, L95–L97 (1981)CrossRefGoogle Scholar
  23. 23.
    Maugis, D., Barquins, M.: Adhesive contact of sectionally smooth-ended punches on elastic half-spaces: theory and experiment. J. Phys. D: Appl. Phys. 16, 1843–1874 (1983)CrossRefGoogle Scholar
  24. 24.
    Mossakovskii, V.I.: Estimating displacements in spatial contact problems [in Russian]. J. Appl. Math. Mech. (PMM) 15, 635–636 (1951)Google Scholar
  25. 25.
    Nowacki, W.: Theory of Elasticity. Mir, Moscow (1975)Google Scholar
  26. 26.
    Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Princeton University Press, Princeton (1951)Google Scholar
  27. 27.
    Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics. Wiley, New York (2002)Google Scholar
  28. 28.
    Shull, K.R.: Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng. R: Rep. 36, 1–45 (2002)CrossRefGoogle Scholar
  29. 29.
    Spolenak, R., Gorb, S., Gao, H., Arzt, E.: Effects of contact shape on the scaling of biological attachments. Proc. R. Soc. A 461, 305–319 (2005)CrossRefGoogle Scholar
  30. 30.
    Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2–13 (1977)CrossRefGoogle Scholar
  31. 31.
    Van Dyke, M.: Perturbation Methods in Fluid Mechanics. The Parabolic Press, Stanford (1975)Google Scholar
  32. 32.
    Wahl, K.J., Asif, S.A.S., Greenwood, J.A., Johnson, K.L.: Oscillating adhesive contacts between micron-scale tips and compliant polymers. J. Colloid Interface Sci. 296, 178–188 (2006)CrossRefGoogle Scholar
  33. 33.
    Yao, H., Gao, H.: Optimal shapes for adhesive binding between two elastic bodies. J. Colloid Interface Sci. 298, 564–572 (2006)CrossRefGoogle Scholar
  34. 34.
    Zhou, S.-S., Gao, X.-L., He, Q.-C.: A unified treatment of axisymmetric adhesive contact problems using the harmonic potential function method. J. Mech. Phys. Solids 59, 145–159 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MechanicsTechnical University of BerlinBerlinGermany
  2. 2.Department of Mathematics, IMPACSAberystwyth UniversityAberystwythUK

Personalised recommendations