Theoretical and Experiment Principles

  • Jochen Hoefs
Chapter
Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)

Abstract

Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons.

References

  1. Abelson PH, Hoering TC (1961) Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Natl Acad Sci USA 47:623Google Scholar
  2. Affek HP, Eiler JM (2006) Abundance of mass 47 CO2 in urban air, car exhaust and human breath. Geochim Cosmochim Acta 70:1–12Google Scholar
  3. Affek HP, Bar-Matthews M, Ayalon A, Matthews A, Eiler JM (2008) Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by “clumped isotope” thermometry. Geochim Cosmochim Acta 72:5351–5360Google Scholar
  4. Albarede F (2015) Metal stable isotopes in the human body: a tribute of geochemistry to medicine. Elements 11:265–269Google Scholar
  5. Albarede F, Telouk P, Balter V, Bondanese VP, Albalat E, Oger P, Bonaventura P, Miossec P, Fujii T (2016) Medical applications of Cu, Zn, and S isotope effects. Metallomics 8:1056–1070Google Scholar
  6. Albarede F, Telouk P, Balter V (2017) Medical applications of isotope metallomics. Rev Min Geochem 82:851–887Google Scholar
  7. Anoshkina Y, Costas-Rodriguez M, Speeckaert M, Van Biesen W, Delanghe J, Vanhaecker D (2017) Iron isotopic composition of blood serum in anemia of chronic kidney disease. Metallomics 24:517–524Google Scholar
  8. Assonov SS, Brenninkmeijer CA (2005) Reporting small Δ17O values: existing definitions and concepts. Rapid Commun Mass Spectrom 19:627–636Google Scholar
  9. Baertschi P (1976) Absolute 18O content of standard mean ocean water. Earth Planet Sci Lett 31:341–344Google Scholar
  10. Balter V, Zazzo A, Moloney AP, Moynier F, Schmidt O, Monahan FJ, Albarede F (2010) Bodily variability of zinc natural isotope abundances in sheep. Rapid Commun Mass Spectr 24:605–612Google Scholar
  11. Balter V, Lamboux A, Zazzo A, Telouk P, Leverrier Y, Marcel J, Moloney AP, Monahan FJ, Schmidt O, Albarede F (2013) Contrasting Cu, Fe, and Zn isotope patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. Metallomics 5:1470–1482Google Scholar
  12. Balter V et al (2015) Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients. PNAS 112:982–985Google Scholar
  13. Bao H, Thiemens MH, Farquahar J, Campbell DA, Lee CC, Heine K, Loope DB (2000) Anomalous 17O compositions in massive sulphate deposits on the Earth. Nature 406:176–178Google Scholar
  14. Bao H, Thiemens MH, Heine K (2001) Oxygen-17 excesses of the Central Namib gypcretes: spatial distribution. Earth Planet Sci Lett 192:125–135Google Scholar
  15. Baroni M, Thiemens MH, Delmas RJ, Savarino J (2007) Mass-independent sulfur isotopic composition in stratospheric volcanic eruptions. Science 315:84–87Google Scholar
  16. Beard BL, Handler RM, Scherer MM, Wu L, Czaja AD, Heimann A, Johnson CM (2010) Iron isotope fractionation between aqueous ferrous iron and goethite. Earth Planet Sci Lett 295:241–250Google Scholar
  17. Becker JS (2005) Recent developments in isotopic analysis by advanced mass spectrometric techniques. J Anal At Spectrom 20:1173–1184Google Scholar
  18. Bigeleisen J (1965) Chemistry of isotopes. Science 147:463–471Google Scholar
  19. Bigeleisen J (1996) Nuclear size and shape effects in chemical reactions. Isotope chemistry of heavy elements. J Am Chem Soc 118:3676–3680Google Scholar
  20. Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261–267Google Scholar
  21. Bigeleisen J, Wolfsberg M (1958) Theoretical and experimental aspects of isotope effects in chemical kinetics. Adv Chem Phys 1:15–76Google Scholar
  22. Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Miner Geochem 69:445–478Google Scholar
  23. Blair N, Leu A, Munoz E, Olsen J, Kwong E, Desmarais D (1985) Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl Environ Microbiol 50:996–1001Google Scholar
  24. Blanchard M, Poitrasson F, Meheut M, Lazzari M, Mauri F, Balan E (2009) Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3): a first-principles density functional theory study. Geochim Cosmochim Acta 73:6565–6578Google Scholar
  25. Blum JD (2011) Applications of stable mercury isotopes to biogeochemistry. In: Baskaran M (Ed) Handbook of environmental isotope geochemistry. Springer, Heidelberg, pp 229–246Google Scholar
  26. Bottinga Y (1969) Carbon isotope fractionation between graphite, diamond and carbon dioxide. Earth Planet Sci Lett 5:301–307Google Scholar
  27. Bottinga Y, Javoy M (1973) Comments on oxygen isotope geothermometry. Earth Planet Sci Lett 20:250–265Google Scholar
  28. Brand W (2002) Mass spectrometer hardware for analyzing stable isotope ratios. In: de Groot P (ed) Handbook of stable isotope analytical techniques. Elsevier, New YorkGoogle Scholar
  29. Brand W, Geilmann H, Crosson ER, Rella CW (2009) Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry; a case study on δ2H and δ18O of pure water samples and alcohol/water mixtures. Rapid Comm Mass Spectrom 23:1879–1884Google Scholar
  30. Bucharenko AI (1995) MIE versus CIE: comparative analysis of magnetic and classical isotope effects. Chem Rev 95:2507–2528Google Scholar
  31. Bucharenko AI (2001) Magnetic isotope effect: nuclear spin control of chemical reactions. J Phys Chem A 105:9995–10011Google Scholar
  32. Bucharenko AI (2013) Mass-independent isotope effects. J Phys Chem B 117:2231–2238Google Scholar
  33. Came RE, Brand U, Affek HP (2014) Clumped isotope signatures in modern brachiopod carbonate. Chem Geol 377:20–30Google Scholar
  34. Cerling TE (1984) The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet Sci Lett 71:229–240Google Scholar
  35. Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon fractionation factors applicable to geologic systems. Rev Miner Geochem 43:1–81Google Scholar
  36. Channon MB, Gordon GW, Morgan JL, Skulan JL, Smith SM, Anbar AD (2015) Using natural stable calcium isotopes of human blood to detect and monitor changes in bone mineral balance. Bone 77:69–74Google Scholar
  37. Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite and calcite: application to geothermometry. Geochim Cosmochim Acta 53:2985–2995Google Scholar
  38. Clayton RN, Kieffer SW (1991) Oxygen isotope thermometer calibrations. In: Taylor HP, O’Neil JR, Kaplan IR (eds) Stable isotope geochemistry: a tribute to Sam Epstein (Geochem Soc Spec Publ). vol 3, pp 3–10Google Scholar
  39. Clayton RN, Goldsmith JR, Karel KJ, Mayeda TK, Newton RP (1975) Limits on the effect of pressure in isotopic fractionation. Geochim Cosmochim Acta 39:1197–1201Google Scholar
  40. Clayton RN, Grossman L, Mayeda TK (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–488Google Scholar
  41. Clayton RN, Goldsmith JR, Mayeda TK (1989) Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochim Cosmochim Acta 53:725–733Google Scholar
  42. Cole DR, Chakraborty S (2011) Rates and mechanisms of isotopic exchange. Stable isotope geochemistry. Rev Min Geochem 43:83–223Google Scholar
  43. Coplen TB (1996) New guidelines for the reporting of stable hydrogen, carbon and oxygen isotope ratio data. Geochim Cosmochim Acta 60:3359–3360Google Scholar
  44. Coplen TB, Kendall C, Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236–238Google Scholar
  45. Coplen TB, Brand Wa, Gehre M, Gröning M, Meijer HA, Toman B, Verkouteren RM (2006) New guidelines for δ13C measurements. Anal Chem 78:2439–2441Google Scholar
  46. Costa-Rodriguez M, Anoshkina Y, Lauwens S, Van Vlierberghe H, Delanghe J, Vanhaecke F (2015) Isotopic analysis of Cu in blood serum by multi-collector ICP-mass-spectrometry: a new approach for the diagnosis and prognosis of liver cirrhosis. Metallomics 7:491–498Google Scholar
  47. Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149Google Scholar
  48. Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834Google Scholar
  49. Craig H, Keeling CD (1963) The effects of atmospheric N20 on the measured isotopic composition of atmospheric CO2. Geochim Cosmochim Acta 27:549–551Google Scholar
  50. Criss RE (1999) Principles of stable isotope distribution. Oxford University Press, OxfordGoogle Scholar
  51. Crowe DE, Valley JW, Baker KL (1990) Micro-analysis of sulfur isotope ratios and zonation by laser microprobe. Geochim Cosmochim Acta 54:2075–2092Google Scholar
  52. Daeron M, Blamart D, Peral M, Affek HP (2016) Absolute isotope abundance ratios and the accuracy of Δ47 measurements. Chem Geol 442:83–96Google Scholar
  53. Dansgaard W (1964) Stable isotope in precipitation. Tellus 16:436–468Google Scholar
  54. Dauphas N, Schauble EA (2016) Mass fractionation laws, mass-independent effects and isotope anomalies. Ann Rev Earth Planet Sci 44:709–783Google Scholar
  55. Dauphas N, Teng FZ, Arndt NT (2010) Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: mantle signatures, no evidence for Soret diffusion and identification of diffusive transport in zoned olivine. Geochim Cosmochim Acta 74:3274–3291Google Scholar
  56. De Groot PA (2004) Handbook of stable isotope analytical techniques. Elsevier, AmsterdamGoogle Scholar
  57. Dennis KJ, Schrag DP (2010) Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochim Cosmochim Acta 74:4110–4122Google Scholar
  58. Driesner T (1997) The effect of pressure on deuterium-hydrogen fractionation in high-temperature water. Science 277:791–794Google Scholar
  59. Eagle RA, Schauble EA, Tripati AK, Tütken T, Hulbert RC, Eiler JM (2010) Body temperatures of modern and extinct vertebrates from 13C–18O bond abundances in bioapatite. PNAS 107:10377–10382Google Scholar
  60. Eagle RA, Tütken T, Martin TS, Tripati AK, Fricke HC, Connely M, Cifelli RL, Eiler JM (2011) Dinosaur body temperatures determined from the (13C–18O) ordering in fossil biominerals. Science 333:443–445Google Scholar
  61. Eagle RA et al (2015) Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Crteaceous dinosaurs. Nat Commun 6:8296Google Scholar
  62. Eiler JM (2007) The study of naturally-occurring multiply-substituted isotopologues. Earth Planet Sci Lett 262:309–327Google Scholar
  63. Eiler JM (2013) The isotopic anatomies of molecules and minerals. Ann Rev Earth Planet Sci 41:411–441Google Scholar
  64. Eiler JM, Schauble E (2004) 18O13C16O in earth, s atmosphere. Geochim Cosmochim Acta 68:4767–4777Google Scholar
  65. Eiler JM, Baumgartner LP, Valley JW (1992) Intercrystalline stable isotope diffusion: a fast grain boundary model. Contr Min Petrol 112:543–557Google Scholar
  66. Eiler JM, Valley JW, Baumgartner LP (1993) A new look at stable isotope thermometry. Geochim Cosmochim Acta 57:2571–2583Google Scholar
  67. Eiler JM et al (2014) Frontiers of stable isotope geoscience. Chem Geol 372:119–143Google Scholar
  68. Ellis AS, Johnson TM, Bullen TD (2004) Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects. Environ Sci Technol 38:3604–3607Google Scholar
  69. Elsenheimer D, Valley JW (1992) In situ oxygen isotope analysis of feldspar and quartz by Nd-YAG laser microprobe. Chem Geol 101:21–42Google Scholar
  70. Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt T, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403:2471–2491Google Scholar
  71. Epov VN, Malinovskiy D, Vanhaecke F, Begue D, Donard OF (2011) Modern mass spectrometry for studying mass-independent fractionation of heavy stable isotopes in environmental and biological sciences. J Anal At Spectrom 26:1142–1156Google Scholar
  72. Estrade N, Carignan J, Sonke JE, Donard O (2009) Mercury isotope fractionation during liquid-vapor evaporation experiments. Geochim Cosmochim Acta 73:2693–2711Google Scholar
  73. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–759Google Scholar
  74. Farquhar J, Johnston DT, Wing BA, Habicht KS, Canfield DE, Airieau S, Thiemens MH (2003) Multiple sulphur isotope interpretations for biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology 1:27–36Google Scholar
  75. Ferry JM, Passey BH, Vasconcelos C, Eiler JM (2011) Formation of dolomite at 40–80 °C in the Latemar carbonate buildup, Dolomites, Italy from clumped isotope thermometry. Geology 39:571–574Google Scholar
  76. Fiebig J, Wiechert U, Rumble D, Hoefs J (1999) High-precision in-situ oxygen isotope analysis of quartz using an ArF laser. Geochim Cosmochim Acta 63:687–702Google Scholar
  77. Fitzsimons ICW, Harte B, Clark RM (2000) SIMS stable isotope measurement: counting statistics and analytical precision. Min Mag 64:59–83Google Scholar
  78. Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Data of geochemistry, 6th edn. Geological States Geological Survey Professional Paper 440-KKGoogle Scholar
  79. Fujii T, Moynier F, Albarede F (2009) The nuclear field shift effect in chemical exchange reactions. Chem Geol 267:139–156Google Scholar
  80. Galimov EM (2006) Isotope organic geochemistry. Org Geochem 37:1200–1262Google Scholar
  81. Gao YQ, Marcus RA (2001) Strange and unconventional isotope effects in ozone formation. Science 293:259–263Google Scholar
  82. Gelabert A, Pokrovsky OS, Viers J, Schott J, Boudou A, Feurtet-Mazel A (2006) Interaction between zinc and marine diatom species: surface complexation and Zn isotope fractionation. Geochim Cosmochim Acta 70:839–857Google Scholar
  83. Ghosh P et al (2006) 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456Google Scholar
  84. Gilbert A, Yamada K, Suda K, Ueno Y, Yoshida N (2016) Measurement of position-specific 13C isotopic composition of propane at the nanomole level. Geochim Cosmochim Acta 177:205–216Google Scholar
  85. Giletti BJ (1986) Diffusion effect on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks. Earth Planet Sci Lett 77:218–228Google Scholar
  86. Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534–536Google Scholar
  87. Gonfiantini R (1984) Advisory group meeting on stable isotope reference samples for geochemical and hydrological investigations. Report Director General IAEA, ViennaGoogle Scholar
  88. Gordon GW, Monge J, Channon MB, Wu Q, Skulan JL, Anbar AD, Fonseca R (2014) Predicting multiple myeloma disease activity by analyzing natural calcium isotope composition. Leukemia 28:2112–2115Google Scholar
  89. Grachev AM, Severinghaus JP (2003) Laboratory determination of thermal diffusion constants for 29N/28N2 in air at temperatures from −60 to 0 °C for reconstruction of magnitudes of abrupt climate changes using the ice core fossil-air paleothermometer. Geochim Cosmochim Acta 67:345–360Google Scholar
  90. Gupta P, Noone D, Galewsky J, Sweeney C, Vaughn BH (2009) Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Comm Mass Spectrom 23:2534–2542Google Scholar
  91. Hagemann R, Nief G, Roth E (1970) Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. Tellus 22:712–715Google Scholar
  92. Hayes JM (1983) Practice and principles of isotopic measurements in organic geochemistry. In: Organic geochemistry of contemporaneous and ancient sediments, Great Lakes Section, SEPM, Bloomington, Ind, pp 5-1–5-31Google Scholar
  93. Henkes GA, Passey BH, Wanamaker AD, Grossman EI, Ambrose WG, Carroll ML (2013) Carbonate clumped isotope composition of modern marine mollusk and brachiopod shells. Geochim Cosmochim Acta 106:307–325Google Scholar
  94. Henkes GA, Passey BH, Grossman EL, Shenton BJ, Perez-Huerta A, Yancey TE (2014) Temperature limits of preservation of primary calcite clumped isotope paleotemperatures. Geochim Cosmochim Acta 139:362–382Google Scholar
  95. Hesterberg R, Siegenthaler U (1991) Production and stable isotopic composition of CO2 in a soil near Bern, Switzerland. Tellus 43B:197–205Google Scholar
  96. Heuser A, Eisenhauer A (2009) A pilot study on the use of natural calcium isotope (44Ca/40Ca) fractionation in urine as a proxy for the human body calcium balance. Bone.  https://doi.org/10.1016/j.bone.2009.11037
  97. Hofmann AE, Bourg IC, DePaolo DJ (2013) Ion desolvation as a mechanism for kinetic isotope fractionation in aqueous systems. PNAS 109:18689–18694Google Scholar
  98. Horita J, Driesner T, Cole DR (1999) Pressure effect on hydrogen isotope fractionation between brucite and water at elevated temperatures. Science 286:1545–1547Google Scholar
  99. Horita J, Cole DR, Polyakov VB, Driesner T (2002) Experimental and theoretical study of pressure effects on hydrous isotope fractionation in the system brucite-water at elevated temperatures. Geochim Cosmochim Acta 66:3769–3788Google Scholar
  100. Hotz K, Walczyk T (2013) Natural iron isotopic composition of blood is an indicator of dietary iron absorption efficiency in humans. J Biol Inorg Chem 18:1–7Google Scholar
  101. Hotz K, Krayenbuehl PA, Walczyk T (2012) Mobilization of storage iron is reflected in the iron isotopic composition of blood in humans. J Biol Inorg Chem 17:301–309Google Scholar
  102. Hu G, Clayton RN (2003) Oxygen isotope salt effects at high pressure and high temperature and the calibration of oxygen isotope thermometers. Geochim Cosmochim Acta 67:3227–3246Google Scholar
  103. Huberty JM, Kita NT, Kozdon R et al (2010) Crystal orientation effects in δ18O for magnetite and hematite by SIMS. Chem Geol 276:269–283Google Scholar
  104. Huntington KW, Eiler JM et al (2009) Methods and limitations of “clumped” CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. J Mass Spectrom 44:1318–1329Google Scholar
  105. Huntington KW, Wernicke BP, Eiler JM (2010) Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry. Tectonics 29 TC3005.  https://doi.org/10.1029/2009tc002449
  106. Huntington KW, Budd DA, Wernicke BP, Eiler JM (2011) Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite. J Sediment Res 81:656–669Google Scholar
  107. Jensen ML, Nakai N (1962) Sulfur isotope meteorite standards, results and recommendations. In: Jensen ML (ed) Biogeochemistry of sulfur isotopes. NSF Symp Vol, p 31Google Scholar
  108. Junk G, Svec H (1958) The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim Cosmochim Acta 14:234–243Google Scholar
  109. Kashiwabara T, Takahashi Y, Tanimizu M, Usui A (2011) Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides. Geochim Cosmochim Acta 75:5762–5784Google Scholar
  110. Kelley SP, Fallick AE (1990) High precision spatially resolved analysis of δ34S in sulphides using a laser extraction technique. Geochim Cosmochim Acta 54:883–888Google Scholar
  111. Kieffer SW (1982) Thermodynamic and lattice vibrations of minerals: 5. Application to phase equilibria, isotopic fractionation and high-pressure thermodynamic properties. Rev Geophys Space Phys 20:827–849Google Scholar
  112. Kita NT, Hyberty JM, Kozdon R, Beard BL, Valley JW (2010) High-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials: accuracy, surface topography and crystal orientation. Surf Interface Anal 43:427–431Google Scholar
  113. Kitchen NE, Valley JW (1995) Carbon isotope thermometry in marbles of the Adirondack Mountains, New York. J Metamorph Geol 13:577–594Google Scholar
  114. Kohn MJ, Valley JW (1998) Obtaining equilibrium oxygen isotope fractionations from rocks: theory and examples. Contr Min Petrol 132:209–224Google Scholar
  115. Kowalski PM, Jahn S (2011) Prediction of equilibrium Li isotope fractionation between minerals and aqueous solutions at high P and T: an efficient ab initio approach. Geochim Cosmochim Acta 75:6112–6123Google Scholar
  116. Kowalski PM, Wunder B, Jahn S (2013) Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T. Geochim Cosmochim Acta 101:285–301Google Scholar
  117. Larner F et al (2015) Zinc isotopic compositions of breast cancer tissue. Metallomics 7:112–117Google Scholar
  118. Luz B, Barkan E, Bender ML, Thiemens MH, Boering KA (1999) Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature 400:547–550Google Scholar
  119. Maréchal CN, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273Google Scholar
  120. Matsuhisa Y, Goldsmith JR, Clayton RN (1978) Mechanisms of hydrothermal crystallization of quartz at 250 °C and 15 kbar. Geochim Cosmochim Acta 42:173–182Google Scholar
  121. Matthews DE, Hayes JM (1978) Isotope-ratio-monitoring gas chromatography-mass spectrometry. Anal Chem 50:1465–1473Google Scholar
  122. Matthews A, Goldsmith JR, Clayton RN (1983) Oxygen isotope fractionation involving pyroxenes: the calibration of mineral-pair geothermometers. Geochim Cosmochim Acta 47:631–644Google Scholar
  123. Mauersberger K, Erbacher B, Krankowsky D, Günther J, Nickel R (1999) Ozone isotope enrichment: isotopomer-specific rate coefficients. Science 283:370–372Google Scholar
  124. McKibben MA, Riciputi LR (1998) Sulfur isotopes by ion microprobe. In: Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7: 121–140Google Scholar
  125. Meheut M, Lazzari M, Balan E, Mauri F (2007) Equilibrium isotopic fractionation in the kaolinite, quartz, water system: prediction from first principles calculations density-functional theory. Geochim Cosmochim Acta 71:3170–3181Google Scholar
  126. Melander L (1960) Isotope effects on reaction rates. Ronald, New YorkGoogle Scholar
  127. Melander L, Saunders WH (1980) Reaction rates of isotopic molecules. Wiley, New YorkGoogle Scholar
  128. Merritt DA, Hayes JM (1994) Nitrogen isotopic analyses of individual amino acids by isotope-ratio-monitoring gas chromatography/mass spectrometry. J Am Soc Mass Spectrom 5:387–397Google Scholar
  129. Miller MF (2002) Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim Cosmochim Acta 66:1881–1889Google Scholar
  130. Möller K, Schoenberg R, Pedersen RB, Weiss D, Dong S (2012) Calibration of new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations. Geostand Geoanal Res 36:177–199Google Scholar
  131. Morgan JL, Skulan JL, Gordon GW, Romaniello SJ, Smith SM, Anbar AD (2012) Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. PNAS 109:9989–9994Google Scholar
  132. Moynier F, Fujii T, Shaw AS, Le Borgne M (2013) Heterogeneous distribution of natural zinc isotopes in mice. Metallomics 5:693–699Google Scholar
  133. Moynier F, Foriel J, Shaw AS, Le Borgne M (2017) Distribution of Zn isotopes during Alzheimer, s disease. Geochemical Persp Lett 3:142–150Google Scholar
  134. Nier AO, Ney EP, Inghram MG (1947) A null method for the comparison of two ion currents in a mass spectrometer. Rev Sci Instrum 18:294Google Scholar
  135. Nier AO (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Phys Rev 77:789Google Scholar
  136. Northrop DA, Clayton RN (1966) Oxygen isotope fractionations in systems containing dolomite. J Geol 74:174–196Google Scholar
  137. O’Neil JR (1986) Theoretical and experimental aspects of isotopic fractionation. In: Stable isotopes in high temperature geological processes. Rev Mineral 16:1–40Google Scholar
  138. Oeser M, Dohmen R, Horn I, Schuth S, Weyer S (2015) Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines. Geochim Cosmochim Acta 154:130–150Google Scholar
  139. Passey BJ, Henkes GA (2012) Carbonate clumped isotope bond reordering and geospeeedometry. Earth Planet Sci Lett 351–352:223–236Google Scholar
  140. Piasecki A, Sessions A, Lawson M, Ferreira AA, Santos Neto EV, Ellis GS, Lewan MD, Eiler JM (2018) Position-specific 13C distributions within propane from experiments and natural gas samples. Geochim Cosmochim Acta 220:110–124Google Scholar
  141. Polyakov VB, Kharlashina NN (1994) Effect of pressure on equilibrium isotope fractionation. Geochim Cosmochim Acta 58:4739–4750Google Scholar
  142. Polyakov VB, Horita J, Cole DR (2006) Pressure effects on the reduced partition function ratio for hydrogen isotopes in water. Geochim Cosmochim Acta 70:1904–1913Google Scholar
  143. Polyakov VB, Clayton RN, Horita J, Mineev SD (2007) Equilibrium iron isotope fractionation factors of minerals: reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mossbauer spectroscopy. Geochim Cosmochim Acta 71:3833–3846Google Scholar
  144. Quade J, Breecker DO, Daeron M, Eiler J (2011) The paleoaltimetry of Tibet: an isotopic perspective. Am J Sci 311:77–115Google Scholar
  145. Rayleigh JWS (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes. Philos Mag 42:493Google Scholar
  146. Richet P, Bottinga Y, Javoy M (1977) A review of H, C, N, O, S, and Cl stable isotope fractionation among gaseous molecules. Ann Rev Earth Planet Sci 5:65–110Google Scholar
  147. Richter FM (2007) Isotopic fingerprints of mass transport processes. Geochim Cosmochim Acta 71:A839Google Scholar
  148. Richter R, Hoernes S (1988) The application of the increment method in comparison with experimentally derived and calculated O-isotope fractionations. Chem Erde 48:1–18Google Scholar
  149. Richter FM, Liang Y, Davis AM (1999) Isotope fractionation by diffusion in molten oxides. Geochim Cosmochim Acta 63:2853–2861Google Scholar
  150. Richter FM, Davis AM, DePaolo D, Watson BE (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923Google Scholar
  151. Richter FM, Dauphas N, Teng FZ (2009) Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion. Chem Geol 258:92–103Google Scholar
  152. Rustad JR, Casey WH, Yin QZ, Bylaska EJ, Felmy AR, Bogatko SA, Jackson VE, Dixon DA (2010) Isotopic fractionation of Mg2+(aq), Ca2+(aq) and Fe2+(aq) with carbonate minerals. Geochim Cosmochim Acta 74:6301–6323Google Scholar
  153. Saenger C, Affek HP, Felis T, Thiagarajan N, Lough JM, Holcomb M (2012) Carbonate clumped isotope variability in shallow water corals: temperature dependence and growth-related vital effects. Geochim Cosmochim Acta 99:224–242Google Scholar
  154. Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Min Geochem 55:65–111Google Scholar
  155. Schauble EA (2007) Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium and other very heavy elements. Geochim Cosmochim Acta 71:2170–2189Google Scholar
  156. Schauble EA (2011) First principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals. Geochim Cosmochim Acta 75:844–869Google Scholar
  157. Schauble EA (2013) Modeling nuclear volume isotope effects in crystals. PNAS 110:17714–17719Google Scholar
  158. Schauble EA, Ghosh P, Eiler JM (2006) Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim Cosmochim Acta 70:2510–2519Google Scholar
  159. Schauble E, Meheut M, Hill PS (2009) Combining metal stable isotope fractionation theory with experiments. Elements 5:369–374Google Scholar
  160. Scheele N, Hoefs J (1992) Carbon isotope fractionation between calcite, graphite and CO2. Contr Min Petrol 112:35–45Google Scholar
  161. Schütze H (1980) Der Isotopenindex—eine Inkrementmethode zur näherungsweisen Berechnung von Isotopenaustauschgleichgewichten zwischen kristallinen Substanzen. Chemie Erde 39:321–334Google Scholar
  162. Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286:930–934Google Scholar
  163. Severinghaus JP, Bender ML, Keeling RF, Broecker WS (1996) Fractionation of soil gases by diffusion of water vapor, gravitational settling and thermal diffusion. Geochim Cosmochim Acta 60:1005–1018Google Scholar
  164. Severinghaus JP, Sowers T, Brook EJ, Alley RB, Bender ML (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391:141–146Google Scholar
  165. Shahar A, Schauble EA, Caracas R, Gleason AE, Reagan MM, Xiao Y, Shu J, Mao W (2016) Pressure-dependent isotopic composition of iron alloys. Science 352:580–582Google Scholar
  166. Sharp ZD (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357Google Scholar
  167. Sharp ZD (1995) Oxygen isotope geochemistry of the Al2SiO5 polymorphs. Am J Sci 295:1058–1076Google Scholar
  168. Sio CK, Dauphas N, Teng FZ, Chaussidon M, Helz RT, Roskosz M (2013) Discerning crystal growth from diffusion profiles in zoned olivine by in-situ Mg-Fe isotope analysis. Geochim Cosmochim Acta 123:302–321Google Scholar
  169. Skulan JL, Palo De (1999) Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates. PNAS 96:13709–13713Google Scholar
  170. Skulan JL, Bullen TD, Anbar AD, Puzas JE, Shackelford L, LeBlanc A, Smith SM (2007) Natural calcium isotope composition of urine as a marker of bone mineral balance. Clin Chem 53:1155–1158Google Scholar
  171. Stern MJ, Spindel W, Monse EU (1968) Temperature dependence of isotope effects. J Chem Phys 48:2908Google Scholar
  172. Stolper DA, Sessions AL, Ferreira AA, Santos Neto EV, Schimmelmann A, Shusta SS, Valentine DL, Eiler JM (2014) Combined 13C–D and D-D clumping in methane: methods and preliminary results. Geochim Cosmochim Acta 126:169–191Google Scholar
  173. Tang J, Dietzel M, Fernandez A, Tripati AK, Rosenheim BE (2014) Evaluation of kinetic effects on clumped isotope fractionation (Δ47) during inorganic calcite precipitation. Geochim Cosmochim Acta 134:120–136Google Scholar
  174. Telouk P et al (2015) Copper isotope effect in serum of cancer patients; a pilot study. Metallomics 7: 299–308Google Scholar
  175. Teng FZ, Dauphas N, Helz RT, Gao S, Huang S (2011) Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth Planet Sci Lett 308:317–324Google Scholar
  176. Teutsch N, von Gunten U, Hofstetter TB, Halliday AN (2005) Adsorption as a cause for isotope fractionation in reduced groundwater. Geochim Cosmochim Acta 69:4175–4185Google Scholar
  177. Thiemens MH (1999) Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283:341–345Google Scholar
  178. Thiemens MH, Heidenreich JE (1983) The mass independent fractionation of oxygen—a novel isotope effect and its cosmochemical implications. Science 219:1073–1075Google Scholar
  179. Thiemens MH, Chakraborty S, Dominguez G (2012) The physical chemistry of mass-independent isotope effects and their observation in nature. Ann Rev Phys Chem 63:155–177Google Scholar
  180. Tripati AK, Eagle RA, Thiagarajan N, Gagnon AC, Bauch H, Halloran PR, Eiler JM (2010) 13C–18O isotope signatures and “clumped isotope” thermometry in foraminifera and coccoliths. Geochim Cosmochim Acta 74:5697–5717Google Scholar
  181. Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 1947:562Google Scholar
  182. Valley JW, Graham C (1993) Cryptic grain-scale heterogeneity of oxygen isotope ratios in metamorphic magnetite. Science 259:1729–1733Google Scholar
  183. Valley J, Graham CM, Harte B, Eiler JM, Kinney PD (1998) Ion microprobe analysis of oxygen, carbon and hydrogen isotope ratios. In: Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:73–98Google Scholar
  184. Vanhaecke F, Balcaen L, Malinovsky D (2009) Use of single-collector and multi-collector ICP-mass spectrometry for isotope analysis. J Anal At Spectrom 24:863–886Google Scholar
  185. Vogl J, Pritzkow W (2010) Isotope reference materials for present and future isotope research. J Anal At Spectrom 25:923–932Google Scholar
  186. Wacker U, Fiebig J, Tödter J, Schöne BR, Bahr A, Friedrich O, Tütken T, Gischler E, Joachimski MM (2014) Emperical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochim Cosmochim Acta 141:127–144Google Scholar
  187. Walczyk T, von Blanckenburg F (2002) Natural iron isotope variation in human blood. Science 295:2065–2066Google Scholar
  188. Wang Z, Schauble EA, Eiler JM (2004) Equilibrium thermodynamics of multiply substituted isotopologues of molecular gas. Geochim Cosmochim Acta 68:4779–4797Google Scholar
  189. Wasylenki LE, Rolfe BA, Weeks CL, Spiro TB, Anbar AD (2008) Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta 72:5997–6005Google Scholar
  190. Wasylenki LE, Weeks CL, Bargar JR, Spiro TG, Hein JD, Anbar AD (2011) The molecular mechanism of Mo isotope fractionation during adsorption to birnessite. Geochim Cosmochim Acta 75:5019–5031Google Scholar
  191. Weiss DJ, Mason TFD, Zhao FJ, Kirk GJD, Coles BJ, Horstwood MSA (2005) Isotopic discrimination of zinc in higher plants. New Phytol 165:703–710Google Scholar
  192. Wiechert U, Hoefs J (1995) An excimer laser-based microanalytical preparation technique for in-situ oxygen isotope analysis of silicate and oxide minerals. Geochim Cosmochim Acta 59:4093–4101Google Scholar
  193. Wiechert U, Fiebig J, Przybilla R, Xiao Y, Hoefs J (2002) Excimer laser isotope-ratio-monitoring mass spectrometry for in situ oxygen isotope analysis. Chem Geol 182:179–194Google Scholar
  194. Wiederhold JG (2015) Metal stable isotope signatures as tracers in environmental geochemistry. Environ Sci Tech 49:2606–2614Google Scholar
  195. Young ED, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66:1095–1104Google Scholar
  196. Young ED, Rumble D, Freedman P, Mills M (2016) A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases. Inter J Mass Spectr 401:1–10Google Scholar
  197. Zheng YF (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochim Cosmochim Acta 55:2299–2307Google Scholar
  198. Zheng YF (1993a) Oxygen isotope fractionation in SiO2 and Al2SiO5 polymorphs: effect of crystal structure. Eur J Min 5:651–658Google Scholar
  199. Zheng YF (1993b) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091Google Scholar
  200. Zheng YF (1993c) Calculation of oxygen isotope fractionation in hydroxyl-bearing minerals. Earth Planet Sci Lett 120:247–263Google Scholar
  201. Zheng YF, Böttcher ME (2015) Oxygen isotope fractionation in double carbonates. Isoto Environ Health Stud (in press)Google Scholar
  202. Zhu XK, O’Nions RK, Guo Y, Belshaw NS, Rickard D (2000) Determination of natural Cu-isotope variations by plasma-source mass spectrometry: implications for use as geochemical tracers. Chem Geol 163:139–149Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jochen Hoefs
    • 1
  1. 1.Abteilung Isotopengeologie, Geowissenschaftliches ZentrumUniversität GöttingenGöttingenGermany

Personalised recommendations