New Trends in Chaos-Based Communications and Signal Processing

Part of the Nonlinear Systems and Complexity book series (NSCH, volume 22)


In the last decades many possible applications of nonlinear dynamics in communication systems and signal processing have been reported. Conversely, techniques usually employed by the signal processing and communication systems communities, as correlation, power spectral density analysis, and linear filters, among others have been used to characterize chaotic dynamical systems. This chapter presents four works that aim to use tools from both fields to generate new and interesting results: (1) a message authentication system based on chaotic fingerprint; (2) a study of the spectral characteristics of the chaotic orbits of the Hénon map; (3) an investigation of the chaotic nature of the signals generated by a filtered Hènon map, and (4) a communication system that presents equalization and a switching scheme between chaos-based and conventional modulations.


Chaos-based Communication Systems (CBCS) Sensitive Dependence On Initial Conditions (SDIC) Binary Phase Shift Keying (BPSK) Chaotic Signal Chaotic Signal Generator (CSG) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



M.E. was partially supported by the National Council for Scientific and Technological Development (CNPq) under Grant 309275/2016-4. M. T. M. S. was partially supported by the São Paulo Research Foundation (FAPESP) under Grant 2017/20378-9 and CNPq under grant 304715/2017-4. C.P. was partially supported by the State of Pernambuco Research Foundation (FACEPE) under Grants APQ-0291-3.04/14 and APQ-0203-3.04/15 and CNPq under grant 303884/2013-4.


  1. 1.
    Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64, 821–824.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ott, E., Grebogi, C., & Yorke, J. A. (1990) Controlling chaos. Physical Review Letters, 64, 1196–1199.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lau, F. C. M., & Tse, C. K. (2003) Chaos-based digital communication systems. Berlin: Springer.CrossRefGoogle Scholar
  4. 4.
    Kennedy, M. P., Setti, G., & Rovatti, R. (Eds.). (2000). Chaotic electronics in telecommunications. Boca Raton, FL: CRC Press.Google Scholar
  5. 5.
    Eisencraft, M., Attux, R. R. F., & Suyama, R. (Eds.). (2013). Chaotic signals in digital communications (electrical engineering & applied signal processing series). Boca Raton, FL: CRC Press.Google Scholar
  6. 6.
    Fontes, R. T., & Eisencraft, M. (2016). A digital bandlimited chaos-based communication system. Communications in Nonlinear Science and Numerical Simulation, 37, 374–385.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Argyris, A., Syvridis, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., García-Ojalvo, J., Mirasso, C. R., Pesquera, L., & Shore, K. A. (2005). Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438, 343–346.CrossRefGoogle Scholar
  8. 8.
    Ren, H.-P., Baptista, M. S., & Grebogi, C. (2013). Wireless communication with chaos. Physical Review Letters, 110, 184101.CrossRefGoogle Scholar
  9. 9.
    Michaels, A. J., & Lau, C. (2014). Generalized multi-carrier chaotic shift keying. In 2014 IEEE Military Communications Conference (pp. 657–662). .Google Scholar
  10. 10.
    Kaddoum, G. (2016). Wireless chaos-based communication systems: A comprehensive survey. IEEE Access, 4, 2621–2648CrossRefGoogle Scholar
  11. 11.
    Hénon, M. (1976). A two-dimensional mapping with a strange attractor. Communications in Mathematical Physics, 50, 94–102.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Eisencraft, M., Fanganiello, R. D., & Baccalá, L. A. (2009). Synchronization of discrete-time chaotic systems in bandlimited channels. Mathematical Problems in Engineering, 2009, 1–12.CrossRefGoogle Scholar
  13. 13.
    Paar, C., & Pelzl, J. (2011). Understanding cryptography. Berlin: Springer.zbMATHGoogle Scholar
  14. 14.
    Jorswieck, E., Tomasin, S., & Sezgin, A. (2015). Broadcasting into the uncertainty: Authentication and confidentiality by physical-layer processing. Proceedings of the IEEE, 103, 1702–1724.CrossRefGoogle Scholar
  15. 15.
    Yu, P. L., Baras, J. S., & Sadler, B. M. (2008). Physical-layer authentication. IEEE Transactions on Information Forensics and Security, 3, 38–51.CrossRefGoogle Scholar
  16. 16.
    Verma, G., Yu, P., & Sadler, B. M. (2015). Physical layer authentication via fingerprint embedding using software-defined radios. IEEE Access, 3, 81–88.CrossRefGoogle Scholar
  17. 17.
    Goergen, N. S., Lin, W. S., Liu, K. J. R., & Clancy, T. C. (2011). Extrinsic channel-like fingerprinting overlays using subspace embedding. IEEE Transactions on Information Forensics and Security, 6, 1355–1369.CrossRefGoogle Scholar
  18. 18.
    Alligood, K. T., Sauer, T. D., & Yorke, J. A. (2000). Chaos. Textbooks in mathematical sciences. New York: Springer.Google Scholar
  19. 19.
    Strogatz, S. H. (2001) Nonlinear dynamics and chaos. Boulder, CO: The Perseus Books Group.Google Scholar
  20. 20.
    Maurer, U. M. (2000). Authentication theory and hypothesis testing. IEEE Transactions on Information Theory, 46, 1350–1356.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lathi, B. P., & Ding, Z. (2009). Modern digital and analog communication systems. The Oxford series in electrical and computer engineering. Oxford: Oxford University Press.Google Scholar
  22. 22.
    Sakai, H., & Tokumaru, H. (1980). Autocorrelations of a certain chaos. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28, 588–590.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Eisencraft, M., Kato, D. M., & Monteiro, L. H. A. (2010). Spectral properties of chaotic signals generated by the skew tent map. Signal Processing, 90, 385–390.CrossRefGoogle Scholar
  24. 24.
    Feltekh, K., Fournier-Prunaret, D., & Belghith, S. (2014). Analytical expressions for power spectral density issued from one-dimensional continuous piecewise linear maps with three slopes. Signal Processing, 94, 149–157.CrossRefGoogle Scholar
  25. 25.
    Costa, R. A., Loiola, M. B., & Eisencraft, M. (2015). Spectral properties of chaotic signals generated by the Bernoulli map. Journal of Engineering Science and Technology Review, 8(2), 12–16.Google Scholar
  26. 26.
    Costa, R. A., Loiola, M. B., & Eisencraft, M. (2017) Correlation and spectral properties of chaotic signals generated by a piecewise-linear map with multiple segments. Signal Processing, 133, 187–191.CrossRefGoogle Scholar
  27. 27.
    Lasota, A., & Mackey, M. C. (1985). Probabilistic properties of deterministic systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. 28.
    Proakis, J. G., & Manolakis, D. K. (2006) Digital Signal Processing (4th ed.). London: Pearson.Google Scholar
  29. 29.
    Baptista, M. S., Macau, E. E., Grebogi, C., Lai, Y.-C., & Rosa, E. (2000). Integrated chaotic communication scheme. Physical Review E, 62, 4835–4845.CrossRefGoogle Scholar
  30. 30.
    Wu, C. W., & Chua, L. O. (1993). A simple way to synchronize chaotic systems with applications to secure communication systems. International Journal of Bifurcation and Chaos, 03, 1619–1627.CrossRefGoogle Scholar
  31. 31.
    Oppenheim, A. V., & Schafer, R. W. (2009) Discrete-time signal processing (3rd ed.). Upper Saddle River, NJ: Addison Wesley.zbMATHGoogle Scholar
  32. 32.
    Eisencraft, M., Fanganiello, R. D., & Monteiro, L. H. A. (2011). Chaotic synchronization in discrete-time systems connected by bandlimited channels. IEEE Communications Letters, 15, 671–673.CrossRefGoogle Scholar
  33. 33.
    Fontes, R. T. (2017). Sistema de comunicação digital em banda limitada baseado em sincronismo caótico (PhD thesis). Universidade de São Paulo.Google Scholar
  34. 34.
    Candido, R., Eisencraft, M., & Silva, M. T. M. (2014) Channel equalization for synchronization of chaotic maps. Digital Signal Processing, 33, 42–49.CrossRefGoogle Scholar
  35. 35.
    Holland, G., Vaidya, N., & Bahl, P. (2001). A rate-adaptive mac protocol for multi-hop wireless networks. In Proceedings of the 7th annual international conference on mobile computing and networking, MobiCom’01, New York, NY, USA (pp. 236–251). New York: ACM.Google Scholar
  36. 36.
    Candido, R., Eisencraft, M., & Silva, M. T. M. (2013). Channel equalization for chaotic communications systems. In M. Eisencraft, R. Attux, & R. Suyama (Eds.), Chaotic signals in digital communications. Boca Raton, FL: CRC Press.Google Scholar
  37. 37.
    Pecora, L. M., Carroll, T. L., Johnson, G. A., Mar, D. J., & Heagy, J. F. (1997). Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos: An Interdisciplinary Journal of Nonlinear Science, 7(4), 520–543.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Haykin, S., & Moher, M. (2009) Communication systems (5th ed.). New York: WileyGoogle Scholar
  39. 39.
    Sayed, A. H. (2008). Adaptive filters. New York: IEEE Computer Society.CrossRefGoogle Scholar
  40. 40.
    Haykin, S. O. (2013). Adaptive filter theory. Englewood Cliffs, NJ: Prentice Hall.zbMATHGoogle Scholar
  41. 41.
    Picchi, G., & Prati, G. (1987). Blind equalization and carrier recovery using a “stop-and-go” decision-directed algorithm. IEEE Transactions on Communications, 35, 877–887.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Escola PolitécnicaUniversity of São PauloSão PauloBrazil
  2. 2.École de Technologie SupérieureMontrealCanada
  3. 3.Federal University of PernambucoRecifeBrazil

Personalised recommendations