Advertisement

From Nonlinear Dynamics to Complex Systems: Introduction

  • Elbert E. N. Macau
Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 22)

Abstract

Nonlinear dynamics is about systems whose dynamics is ruled by nonlinear algebraic or nonlinear differential equations. In regard to their physical behavior, the relationships between changes in their inputs and the resultant behavior in their outputs are not proportional to one another. This behavior characterizes them as nonlinear systems. A nonlinear system may present chaotic dynamics if its dynamics is on average exponentially sensitive to changes in its initial condition [1]. In this case, although generated by a deterministic system, a chaotic trajectory appears to be complicated and even resembles having random behavior.

References

  1. 1.
    Alligood, K. T., Sauer, T. D., & Yorke, J. A. (2000). Chaos: An introduction to dynamical systems. New York: Springer.zbMATHGoogle Scholar
  2. 2.
    Kantz, H., & Schreiber, T. (2003). Nonlinear time series analysis (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. 3.
    Macau, E. E. N., & Grebogi, C. (1999). Driving trajectories in complex systems. Physical Review E, 59, 4062.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Badii, R., & Politi, A. (1999). Complexity: Hierarchical structures and scaling in physics. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  5. 5.
    Mitchell, M. (2011). Complexity: A guided tour. New York: Oxford University Press.zbMATHGoogle Scholar
  6. 6.
    Bruzón, M. S., Gandarias, M. L., & de la Rosa, R. (2018). An overview of the generalized Gardner equation: Symmetry groups and conservation laws. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.Google Scholar
  7. 7.
    Gandarias, M. L., Bruzón, M. S., & Rosa, M. (2018). On symmetries and conservations laws for a generalized Fisher-Kolmogorov-Petrovsky-Piskunov equation. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.Google Scholar
  8. 8.
    Livorati, A. L. P. (2018). Tunable orbits influence in a driven stadium-like billiard. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.Google Scholar
  9. 9.
    Chimanski, E. V., Martins, C. G. L., Chertovskih, R., Rempel, E. L., Roberto, M., Caldas, I. L., et al. (2018). Intermittency and transport barriers in fluids. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.Google Scholar
  10. 10.
    Leonel, E. D., & Marques, M. F. (2018). An investigation of the chaotic transient for a boundary crisis in the Fermi-Ulam model. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.Google Scholar
  11. 11.
    Eisencraft, M., Evangelista, J. V. C., Costa, R. A., Fontes, R. T., Candido, R., Chaves, D. P. B., et al. (2018). New trends in chaos-based communications and signal processing. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.Google Scholar
  12. 12.
    Ramírez-Ávila, G. M., Kurths, J., Depickère, S., & Deneubourg, J. L. (2018). Modeling fireflies synchronization. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.Google Scholar
  13. 13.
    Algar, S. D., Stemler, T., & Small, M. (2018). From flocs to flocks. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.Google Scholar
  14. 14.
    Donner, R. V., Lindner, M., Tupikina, L., & Mokkenthin, N. (2018). Characterizing flows by complex network methods. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.Google Scholar
  15. 15.
    Rodrigues, F. A. (2018). Network centrality: An introduction. In E. E. N. Macau (Ed.), From nonlinear dynamics to complex systems: A mathematical modeling approach. New York: Springer.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Elbert E. N. Macau
    • 1
  1. 1.Instituto Nacional de Pesquisas Espaciais – INPE and Federal University of Sao Paulo – UNIESPSao Jose dos CamposBrazil

Personalised recommendations