Abstract
This chapter presents the different medical classifications and terminologies as ICD diagnosis codes, SNOMED CT, MeSH, UMLS, ATC etc.
Download chapter PDF
References
Ahltorp, M., Skeppstedt, M., Kitajima, S., Rzepka, R., & Araki, K. (2014). Medical vocabulary mining using distributional semantics on Japanese patient blogs. In 6th International Symposium on Semantic Mining in Biomedicine (SMBM), Aveiro, Portugal, October 6–7, 2014 (pp. 57–62).
Alfalahi, A., Skeppstedt, M., Ahlbom, R., Baskalayci, R., Henriksson, A., Asker, L., et al. (2015). Expanding a dictionary of marker words for uncertainty and negation using distributional semantics. In Proceedings of the Sixth International Workshop on Health Text Mining and Information Analysis, Louhi, Held in Conjunction with EMNLP 2015, Lisbon, Portugal (pp. 90–96). Association for Computational Linguistics.
Chen, R., & Klein, G. (2007). The openEHR Java reference implementation project. Studies in Health Technology and Informatics, 129(1), 58.
Chen, R., Klein, G. O., Sundvall, E., Karlsson, D., & Åhlfeldt, H. (2009). Archetype-based conversion of EHR content models: Pilot experience with a regional EHR system. BMC Medical Informatics and Decision Making, 9(1), 33.
Henriksson, A., Moen, H., Skeppstedt, M., Daudaravicius, V., & Duneld, M. (2014). Synonym extraction and abbreviation expansion with ensembles of semantic spaces. Journal of Biomedical Semantics, 5, 6.
Humphreys, B. L., Lindberg, D. A. B., Schoolman, H. M., & Barnett, G. O. (1998). The unified medical language system. Journal of the American Medical Informatics Association, 5(1), 1–11.
IHTSDO. (2016). SNOMED-CT, Systematized nomenclature of medicine-clinical terms. http://www.ihtsdo.org/snomed-ct/. Accessed 11 Jan 2018.
Liu, H., Aronson, A. R., & Friedman, C. (2002). A study of abbreviations in medline abstracts. In AMIA Annual Symposium Proceedings (p. 464). American Medical Informatics Association.
Moriyama, I. M., Loy, R. M., Robb-Smith, A. H., Rosenberg, H. M., & Hoyert, D. L. (2011). History of the Statistical Classification of Diseases and Causes of Death. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics.
Skeppstedt, M., Kvist, M., & Dalianis, H. (2012). Rule-based entity recognition and coverage of SNOMED CT in Swedish clinical text. In Proceedings of the Eighth International Conference on Language Resources and Evaluation, LREC 2012 (pp. 1250–1257).
Suominen, H., Salanterä, S., Velupillai, S., Chapman, W. W., Savova, G., Elhadad, N., et al. (2013). Overview of the ShARe/CLEF eHealth Evaluation Lab 2013. In Information Access Evaluation. Multilinguality, Multimodality, and Visualization (pp. 212–231). Berlin: Springer.
Author information
Authors and Affiliations
Rights and permissions
This chapter is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
Copyright information
© 2018 The Author(s)
About this chapter
Cite this chapter
Dalianis, H. (2018). Medical Classifications and Terminologies. In: Clinical Text Mining. Springer, Cham. https://doi.org/10.1007/978-3-319-78503-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-78503-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78502-8
Online ISBN: 978-3-319-78503-5
eBook Packages: Computer ScienceComputer Science (R0)