Skip to main content

Abstract

In the theoretical debate on the evolution of species which structures the “neutralist theory” and the “niche theory”, the study of biodiversity has provided numerous examples supporting the niche theory, with a distribution of similar species between Habitats which are differentiated by their abiotic characteristics which define the environment within its wider context. The environment is understood to be the living space of species, whether distributed according to terrestrial biomes or smaller systems such as the gastrointestinal tract of a vertebrate and its associated microorganisms. The heterogeneity of abiotic parameters constituting a mosaic of niches has been integrated as an important factor of evolution and speciation. In this analysis of biodiversity, the various abiotic factors constituted essential determinants regarding the diversity to which species must adapt. This vision can lead to undervalue the importance of interactions between organisms which themselves do not only live in the richness of the ecosystem, but also according to adaptive responses to its components. Research conducted on these biotic interactions, which initially focused on understanding speciation phenomena and their role in the evolutionary dynamics that led to current diversity remains relatively unknown. It is important to decipher the effects of complex relationships between species to understand the dynamic structuring of their communities according to physical environments, whilst studying networks of functional associations in relation to the environment.

Associations between species, on a multi-scale level and at the level of interactions, including those discussed here, are, for a plant, associated with a cohort of partners (pollinators, dispersers, herbivores, symbionts or even a vertebrate such as man, along with microorganisms and parasites), determine the capacity of the ‘host’ partner to persist in its environment thanks to the benefits provided by the association, or rather to its resistance to exploitation attempts by symbionts (competition, predation, parasitism). However, the symbiosis between species, “living together”, is not an exclusive game between partners in a closet space, it comes within a wider environmental context to which each of the partners involved in the association must adapt, consequently modifying its environment and therefore that of other organisms living in it. This adaptive game, a permanent maintaining or breaking up of associations, gives an image of the resulting biodiversity dynamics. Within this conceptual framework, coviability between species, regardless of the level at which we study it, should be perceived according to a range of interactions between species, also encompassing the environment and the changes it undergoes. In the current Anthropocene era, the action of man on his environment may directly or indirectly affect such biotic associations and sometimes result in a cascade of ecological disturbances which are not predictable in terms of their outcome or magnitude.

Biodiversity should not be seen as an assembly of species which are decreasing in alarming numbers but should instead be included in the evolutionary dynamic mechanism in motion, linking past events, genetic diversity and coadaptation within a context of global change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Desoxyribonucleic Acid: genetic information carrier molecule.

  2. 2.

    The extended phenotype is an integral concept in the phenotype of an organism (from its form to its finest physiology) the set of the manifestations of its own genome and of those of its symbionts in a given environment.

  3. 3.

    Allogamy: fertilization of an ovum from one individual with the spermatozoa of another.

    Autogamy: the fusion of two gametes from the same individual for fertilization.

References

  • Allsopp BA (2010) Natural history of Ehrlichia ruminantium. Vet Parasitol 167:123–135

    Article  CAS  Google Scholar 

  • Atyame CM, Labbe P, Dumas E, Milesi P, Charlat S, Fort P, Weill M (2014) Wolbachia divergence and the evolution of cytoplasmic incompatibility in Culex pipiens. PLoS One 9:e87336

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melian CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci U S A 100:9383–9387

    Article  CAS  Google Scholar 

  • Beja-Pereira A, Luikart G, England PR, Bradley DG, Jann OC, Bertorelle G, Chamberlain AT, Nunes TP, Metodiev S, Ferrand N, Erhardt G (2003) Gene-culture coevolution between cattle milk protein genes and human lactase genes. Nat Genet 35:311–313

    Article  CAS  Google Scholar 

  • Blanco J, Pascal L, Ramon L, Vandenbroucke H, Carrière SM (2013) Agrobiodiversity performance in contrasting island environments: the case of shifting cultivation in Vanuatu, Pacific. Agric Ecosyst Environ 174:28–39

    Article  Google Scholar 

  • Blondel J, Dias PC, Perret P, Maistre M, Lambrechts MM (1999) Selection-based biodiversity at a small spatial scale in a low-dispersing insular bird. Science 285:1399–1402

    Article  CAS  Google Scholar 

  • Borody T, Fischer M, Mitchell S, Campbell J (2015) Fecal microbiota transplantation in gastrointestinal disease: 2015 update and the road ahead. Expert Rev Gastroenterol Hepatol:1–13

    Google Scholar 

  • Boullard B, Lemoine Y (1971) Les Champignons endophytes du Rhynia Gwynne-Vaughanii: étude morphologique et déductions sur leur biologie. Le Botaniste 54:49–89

    Google Scholar 

  • Boyd R, Richerson P (1995) Why does culture increase human adaptability? Ethol Sociobiol 16:125–143

    Article  Google Scholar 

  • Brandt LJ, Borody TJ, Campbell J (2011) Endoscopic fecal microbiota transplantation: “first-line” treatment for severe clostridium difficile infection? J Clin Gastroenterol 45:655–657

    Article  Google Scholar 

  • Bromberg JS, Fricke WF, Brinkman CC, Simon T, Mongodin EF (2015) Microbiota-implications for immunity and transplantation. Nat Rev Nephrol 11:342–353

    Article  CAS  Google Scholar 

  • Burridge MJ, Simmons LA, Peter TF, Mahan SM (2002) Increasing risks of introduction of heartwater onto the American mainland associated with animal movements. Ann N Y Acad Sci 969:269–274

    Article  Google Scholar 

  • Capot J (1976) Obtention et perspectives d’un nouvel hybride de caféier en Côte d’Ivoire: l’Arabusta. In 7e Colloque International sur lakhimie des Cafés (Paris: ASIC), pp 449–457

    Google Scholar 

  • Carroll L (1865) Alice’s adventures in wonderland. Macmillan, London

    Google Scholar 

  • Chappell MA, Souza SL (1988) Thermoregulation, gas exchange, and ventilation in Adelie penguins (Pygoscelis adeliae). J Comp Physiol B 157:783–790

    Article  CAS  Google Scholar 

  • Charles D (2006) A ‘forever’ seed bank takes root in the Arctic. Science 312:1730–1731

    Article  CAS  Google Scholar 

  • Combes C (1997) Interactions durables. Elsevier Masson, Paris

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Day RL, Laland KN, Odling-Smee FJ (2003) Rethinking adaptation: the niche-construction perspective. Perspect Biol Med 46:80–95

    Article  CAS  Google Scholar 

  • de Bekker C, Quevillon LE, Smith PB, Fleming KR, Ghosh D, Patterson AD, Hughes DP (2014) Species-specific ant brain manipulation by a specialized fungal parasite. BMC Evol Biol 14:166

    Article  Google Scholar 

  • Devaux CA (2012) Emerging and re-emerging viruses: a global challenge illustrated by Chikungunya virus outbreaks. World J Virol 1:11–22

    Article  Google Scholar 

  • Eibl JM, Plunkett GM, Lowry PP II (2001) Evolution of Polyscias sect. Tieghemopanax (Araliaceae) based on nuclear and chloroplast DNA sequence data. Adansonia Sér 23:23–48

    Google Scholar 

  • Engelstadter J, Telschow A (2009) Cytoplasmic incompatibility and host population structure. Heredity 103:196–207

    Article  CAS  Google Scholar 

  • Fine PV, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665

    Article  CAS  Google Scholar 

  • Finlayson C (2005) Biogeography and evolution of the genus Homo. Trends Ecol Evol 20:457–463

    Article  Google Scholar 

  • Fix AG (2003) Simulating hemoglobin history. Hum Biol 75:607–618

    Article  Google Scholar 

  • Foster JA, Lyte M, Meyer E, Cryan JF (2015) Gut microbiota and brain function: an evolving field in neuroscience. Int J Neuropsychopharmacol

    Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, New York

    Book  Google Scholar 

  • Frost GH, Siegfried WR, Burger AE (1976) Behavioural adaptations of the Jackass Penguin, Spheniscus demersus to a hot, arid environment. J Zool 179:165–187

    Article  Google Scholar 

  • Fujimura KE, Lynch SV (2015) Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe 17:592–602

    Article  CAS  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R, Cunningham SA, Carvalheiro LG, Chacoff NP, Dudenhoffer JH, Greenleaf SS, Holzschuh A, Isaacs R, Krewenka K, Mandelik Y, Mayfield MM, Morandin LA, Potts SG, Ricketts TH, Szentgyorgyi H, Viana BF, Westphal C, Winfree R, Klein AM (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14:1062–1072

    Article  Google Scholar 

  • Gaume L, Zacharias M, Grosbois V, Borges RM (2005) The fitness consequences of bearing domatia and having the right ant partner: experiments with protective and non-protective ants in a semi-myrmecophyte. Oecologia 145:76–86

    Article  Google Scholar 

  • Gentry AH (1981) Distributional patterns and an additional species of the Passiflora vitifolia cornplex: Amazonian species diversity due to edaphically differentiated communities. Plant Syst Evol 137:95–105

    Article  Google Scholar 

  • Hanski I (2001) Spatially realistic theory of metapopulation ecology. Die Naturwissenschaften 88:372–381

    Article  CAS  Google Scholar 

  • Hatcher MJ, Dick JT, Dunn AM (2006) How parasites affect interactions between competitors and predators. Ecol Lett 9:1253–1271

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Jany JL, Martin F, Garbaye J (2003) Respiration activity of ectomycorrhizas soil water potential in five beech forests. Plant Soil 255:487–494

    Article  CAS  Google Scholar 

  • Kang YJ, Jo JO, Cho MK, Yu HS, Ock MS, Cha HJ (2011) Trichinella spiralis infection induces angiogenic factor thymosin beta4 expression. Vet Parasitol 181:222–228

    Article  CAS  Google Scholar 

  • Kelly PJ, Lucas H, Yowell C, Beati L, Dame J, Urdaz-Rodriguez J, Mahan S (2011) Ehrlichia ruminantium in Amblyomma variegatum and domestic ruminants in the Caribbean. J Med Entomol 48:485–488

    Article  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    Article  CAS  Google Scholar 

  • Krishna A, Paulo R, Guimarães PJ Jr, Bascompte J (2008) A neutral-niche theory of nestedness in mutualistic networks. Oikos 117:1609–1618

    Article  Google Scholar 

  • Labeyrie E, Pascal L, Delabie J, Orivel J, Dejean A, Hossaert-Mckey M (2001) Protection of Passiflora glandulosa (Passifloraceae) against herbivory: impact of ants exploiting extrafloral nectaries. Sociobiology 38:317–321

    Google Scholar 

  • Laland KN, Odling-Smee J, Myles S (2010) How culture shaped the human genome: bringing genetics and the human sciences together. Nat Rev Genet 11:137–148

    Article  CAS  Google Scholar 

  • Lepelley M, Mahesh V, McCarthy J, Rigoreau M, Crouzillat D, Chabrillange N, de Kochko A, Campa C (2012) Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae). Planta 236:313–326

    Article  CAS  Google Scholar 

  • LeVan KE, Hung KL, McCann KR, Ludka JT, Holway DA (2014) Floral visitation by the Argentine ant reduces pollinator visitation and seed set in the coast barrel cactus, Ferocactus viridescens. Oecologia 174:163–171

    Article  Google Scholar 

  • Macheix JJ, Fleuriet A, Jay-Allemand C (2005) Les composés phénoliques des végétaux: Un exemple de métabolites secondaires d’importance. PPUR, Lausanne

    Google Scholar 

  • Mazoyer M, Roudart L (2002) Histoire des agricultures du monde. Du néolithique à la crise contemporaine. Edition du Seuil, Paris

    Google Scholar 

  • McKey D, Gaume L, Brouat C, Di Giusto B, Pascal L (2005) The trophic structure of tropical ant-plant-herbivore interactions: community consequences and coevolutionary dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Moeller AH, Li Y, Mpoudi Ngole E, Ahuka-Mundeke S, Lonsdorf EV, Pusey AE, Peeters M, Hahn BH, Ochman H (2014) Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci U S A 111:16431–16435

    Article  CAS  Google Scholar 

  • Monod J (1973) Le Hasard et la Nécessité. Editions du Seuil, Paris

    Google Scholar 

  • Morton JB (1990) Revised classification of the arbuscular mycorrhizal fungi (Zycomycetes): a new order, Glomales, two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:473

    Google Scholar 

  • Naug D (2009) Nutritional stress due to habitat loss can explain recent honeybee colony collapses. Biol Conserv 142:2369–2372

    Article  Google Scholar 

  • Pascal L, Motte-Florac E (2008) Plantes, transferts et résistances; reflet d’un métissage à l’œuvre sur les marchés de la Guyane française. In 133° Congrès National des Sociétés Historiques et Scientifiques (Quebec, Canada)

    Google Scholar 

  • Peterson RKD (1995) Insects, disease, and military history. Am Entomol 41:147–161

    Article  Google Scholar 

  • Pujol B, Muhlen G, Garwood N, Horoszowski Y, Douzery EJ, McKey D (2005) Evolution under domestication: contrasting functional morphology of seedlings in domesticated cassava and its closest wild relatives. New Phytol 166:305–318

    Article  Google Scholar 

  • Radix P, Bastien C, Jay-Allemand C, Charlot G, Seigle-Murandi F (1998) The influence of soil nature on polyphenols in walnut tissues. A possible explanation of differences in the expression of walnut blight. Agronomie 18:627–637

    Article  Google Scholar 

  • Rands CM, Darling A, Fujita M, Kong L, Webster MT, Clabaut C, Emes RD, Heger A, Meader S, Hawkins MB, Eisen MB, Teiling C, Affourtit J, Boese B, Grant PR, Grant BR, Eisen JA, Abzhanov A, Ponting CP (2013) Insights into the evolution of Darwin’s finches from comparative analysis of the Geospiza magnirostris genome sequence. BMC Genomics 14:95

    Article  CAS  Google Scholar 

  • Richard F, Roy M, Shahin O, Sthultz C, Duchemin M, Joffre R, Selosse MA (2011) Ectomycorrhizal communities in a Mediterranean forest ecosystem dominated by Quercus ilex: seasonal dynamics and response to drought in the surface organic horizon. Ann For Sci 68:57–68

    Article  Google Scholar 

  • Rico-Gray V, Oliveira PS (2007) The ecology and evolution of ant-plant interactions. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Rokas II (2000) Wolbachia as a speciation agent. Trends Ecol Evol 15:44–45

    Article  CAS  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274

    Article  CAS  Google Scholar 

  • Schommer NN, Gallo RL (2013) Structure and function of the human skin microbiome. Trends Microbiol 21:660–668

    Article  CAS  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Simon L, Bousquet J, Levesque R, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular plants. Nature 363:67–69

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Speed MP, Fenton A, Jones MG, Ruxton GD, Brockhurst MA (2015) Coevolution can explain defensive secondary metabolite diversity in plants. New Phytol 208:1251–1263

    Article  Google Scholar 

  • Steinbauer M, Wallis I, Davies N, Watson S (2015) Foliar quality of co-occurring mallee eucalypts: balance of primary and secondary metabolites reflects past growing conditions. Chemoecology 25:179–191

    Article  CAS  Google Scholar 

  • Sunamura E, Espadaler X, Sakamoto H, Suzuki S, Terayama M, Tatsuki S (2009) Intercontinental union of Argentine ants: behavioral relationships among introduced populations in Europe, North America, and Asia. Insect Soc 56:143–147

    Article  Google Scholar 

  • Tardieu V (2009) L’étrange silence des abeilles. Enquête sur un déclin inquiétant. Belin, Paris

    Google Scholar 

  • Taylor T, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87:560–573

    Article  Google Scholar 

  • Teressa A, Crouzillat D, Petiard V, Brouhan P (2010) Genetic diversity of Arabica coffee (Coffea arabica L.) collections. EJAST 1:63–79

    Google Scholar 

  • Tilman D (2011) Diversification, biotic interchange, and the universal trade-off hypothesis. Am Nat 178:355–371

    Article  Google Scholar 

  • United-Nations (2013) UN Migration Report (United Nations)

    Google Scholar 

  • Van Valen L (1973) A new evolutionnary law. Evol Theory 1:1–30

    Google Scholar 

  • Vandermeer JH (1972) Niche theory. Ann Rev Ecol Syst 3:107–132

    Article  Google Scholar 

  • Vandermeer JH (2008) The niche construction paradigm in ecological time. Ecol Model 214: 385–390

    Article  Google Scholar 

  • Vavre F, Fleury F, Varaldi J, Fouillet P, Bouletreau M (2002) Infection polymorphism and cytoplasmic incompatibility in Hymenoptera-Wolbachia associations. Heredity 88:361–365

    Article  CAS  Google Scholar 

  • Vavre F, Fouillet P, Fleury F (2003) Between- and within-host species selection on cytoplasmic incompatibility-inducing Wolbachia in haplodiploids. Evolution 57:421–427

    Google Scholar 

  • Verdu EF, Galipeau HJ, Jabri B (2015) Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat Rev Gastroenterol Hepatol 12:497–506

    Article  CAS  Google Scholar 

  • Wallace A (1870) Contributions to the theory of natural selection. Macmillan and Co, London

    Google Scholar 

  • Walter J, Ley R (2011) The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol 65:411–429

    Article  CAS  Google Scholar 

  • Zhang WJ, Bjorn LO (2009) The effect of ultraviolet radiation on the accumulation of medicinal compounds in plants. Fitoterapia 80:207–218

    Article  CAS  Google Scholar 

  • Zhu J, Oger PM, Schrammeijer B, Hooykaas PJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Pascal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pascal, L., Moulia, C., Gavotte, L. (2019). Biotic Interactions, Coviability and Dynamic of Biodiversity. In: Barrière, O., et al. Coviability of Social and Ecological Systems: Reconnecting Mankind to the Biosphere in an Era of Global Change. Springer, Cham. https://doi.org/10.1007/978-3-319-78497-7_9

Download citation

Publish with us

Policies and ethics