Advertisement

Segmentation of Texts in Old Babylonian Mathematics

  • Christine ProustEmail author
Chapter
Part of the Why the Sciences of the Ancient World Matter book series (WSAWM, volume 1)

Abstract

This chapter offers an analysis of the segmentation of texts into lists of mathematical problems written on clay tablets during the Old Babylonian period (early second millennium BCE). The study focuses on mathematical series texts, that is, long lists of statements written on several numbered tablets. Two aspects are considered: material segmentation (sections, columns, tablets…) and textual segmentation (statements, groups of statements), as well as the relationship between these two aspects. It is shown that the analysis of parts of text may be a powerful tool for the reconstruction of the entire series and for detecting the operations on texts which produced the series.

Abbreviations

MCT:

Neugebauer, et al. 1945

MKT:

Neugebauer 1935–1937

TMB:

Thureau-Dangin 1938

Bibliography

  1. Friberg, J. 2000. Mathematics at Ur in the Old Babylonian period. Revue d’Assyriologie 94: 98–188.Google Scholar
  2. Høyrup, J. 2000. The finer structure of the Old Babylonian mathematical corpus. Elements of classification, with some results. In Assyriologica et Semitica. Festschrift für Joachim Oelsner anläßlich seines 65 (AOAT), eds. Marzahn, J., and H. Neumann, 117–178. Münster: Ugarit Verlag.Google Scholar
  3. Høyrup, J. 2001. The Old Babylonian square texts–BM 13901 and YBC 4714. Retranslation and analysis. In Changing views on ancient Near Eastern Mathematics, eds. Høyrup, J., and P. Damerow, 155–218. Berlin: Berliner Beiträge zum Vorderen Orient.Google Scholar
  4. Høyrup, J. 2002. Lengths, widths, surfaces. A portrait of Old Babylonian algebra and its kin. Studies and Sources in the History of Mathematics and Physical Sciences. Berlin: Springer.Google Scholar
  5. Kramer, S.N. 1949. Schooldays: a Sumerian composition relating to the education of a scribe. Philadelphia, Penn.: The University Museum.Google Scholar
  6. Middeke-Conlin, R., and Proust, C. 2014. Interest, price, and profit: An overview of mathematical economics in YBC 4698. Cuneiform Digital Library Journal: 3. (http://cdli.ucla.edu/pubs/cdlj/2014/cdlj2014_003.html).
  7. Neugebauer, O. 1935–1937. Mathematische Keilschrifttexte I-III. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Berlin: Springer.Google Scholar
  8. Neugebauer, O., and Sachs, A. J. 1945. Mathematical cuneiform texts. American Oriental Studies, vol. 29. New Haven, Conn.: American Oriental Series & American Schools of Oriental Research.Google Scholar
  9. Proust, C. 2009. Deux nouvelles tablettes mathématiques du Louvre: AO 9071 et AO 9072. Zeitschrift für Assyriologie und Vorderasiatische Archäologie 99: 167–232.CrossRefGoogle Scholar
  10. Proust, C. 2012. Reading colophons from Mesopotamian clay-tablets dealing with mathematics. NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 20: 123–156.CrossRefGoogle Scholar
  11. Proust, C. 2013. Du calcul flottant en Mésopotamie. La Gazette des Mathématiciens 138: 23–48.Google Scholar
  12. Proust, C. 2015. A tree-structured list in a mathematical series text from Mesopotamia. In Texts, textual acts and the history of science, eds. Chemla, K., and J. Virbel, 281–316. Archimedes. Berlin: Springer.Google Scholar
  13. Proust, C. Forthcoming. Algorithms through sets of problems in Old Babylonian cuneiform texts: steps without meaning. In Practices of reasonning in ancient mathematics and astral sciences, eds. Proust, C., M. Husson and A. Keller [in press].Google Scholar
  14. Thureau-Dangin, F. 1938. Textes mathématiques Babyloniens. Leiden: Ex Oriente Lux.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS & Université Paris Diderot, LaboratoireSPHERE, UMR 7219Paris Cedex 13France

Personalised recommendations