Skip to main content

The Maximum Distance-d Independent Set Problem on Unit Disk Graphs

  • Conference paper
  • First Online:
Book cover Frontiers in Algorithmics (FAW 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10823))

Included in the following conference series:

Abstract

In this article, we study the maximum distance-d independent set problem, a variant of the maximum independent set problem, on unit disk graphs. We first show that the problem is NP-hard. Next, we propose a polynomial-time constant-factor approximation algorithm and a PTAS for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The length of a smallest cycle.

  2. 2.

    By independent we mean for any \(p_i \in H_i \cap P\) and \(p_j \in H_j \cap P\), \(p_i\) and \(p_j\) are distance-d independent and also, \(OPT^i \cap OPT^j = \emptyset \).

  3. 3.

    If there are two components of \(G_\chi \) having distance less than d in G, then we can view them as a single component.

References

  1. Agnarsson, G., Damaschke, P., Halldórsson, M.M.: Powers of geometric intersection graphs and dispersion algorithms. Discrete Appl. Math. 132(1), 3–16 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM (JACM) 45(3), 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, G.J., Nemhauser, G.L.: The \(k\)-domination and \(k\)-stability problems on sun-free chordal graphs. SIAM J. Algebraic Discrete Methods 5(3), 332–345 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1–3), 165–177 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Das, G.K., De, M., Kolay, S., Nandy, S.C., Sur-Kolay, S.: Approximation algorithms for maximum independent set of a unit disk graph. Inf. Process. Lett. 115(3), 439–446 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric intersection graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eto, H., Guo, F., Miyano, E.: Distance-\(d\) independent set problems for bipartite and chordal graphs. J. Comb. Optim. 27(1), 88–99 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximability of the distance independent set problem on regular graphs and planar graphs. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 270–284. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6_20

    Chapter  Google Scholar 

  10. Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximation algorithm for the distance-3 independent set problem on cubic graphs. In: Poon, S.-H., Rahman, M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 228–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53925-6_18

    Chapter  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, vol. 29. W. H. Freeman, New York (2002)

    Google Scholar 

  13. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 47–63. ACM (1974)

    Google Scholar 

  14. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comput. 1(2), 180–187 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Halldórsson, M.M.: Approximating discrete collections via local improvements. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 160–169. Society for Industrial and Applied Mathematics (1995)

    Google Scholar 

  16. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM (JACM) 32(1), 130–136 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hsu, W.L., Nemhauser, G.L.: Algorithms for minimum covering by cliques and maximum clique in claw-free perfect graphs. Discrete Math. 37(2–3), 181–191 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jallu, R.K., Das, G.K.: Improved algorithm for maximum independent set on unit disk graph. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 212–223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2_18

    Chapter  Google Scholar 

  19. Marathe, M.V., Breu, H., Hunt, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple heuristics for unit disk graphs. Networks 25(2), 59–68 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Matsui, T.: Approximation algorithms for maximum independent set problems and fractional coloring problems on unit disk graphs. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 194–200. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46515-7_16

    Chapter  Google Scholar 

  21. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory Ser. B 28(3), 284–304 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Montealegre, P., Todinca, I.: On distance-d independent set and other problems in graphs with “few” minimal separators. In: Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 183–194. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53536-3_16

    Chapter  Google Scholar 

  23. Murphy, O.J.: Computing independent sets in graphs with large girth. Discrete Appl. Math. 35(2), 167–170 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nandy, S.C., Pandit, S., Roy, S.: Faster approximation for maximum independent set on unit disk graph. Inf. Process. Lett. 127, 58–61 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nieberg, T., Hurink, J., Kern, W.: A robust PTAS for maximum weight independent sets in unit disk graphs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 214–221. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0_18

    Chapter  Google Scholar 

  26. Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Math. Univ. Carol. 15(2), 307–309 (1974)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jena, S.K., Jallu, R.K., Das, G.K., Nandy, S.C. (2018). The Maximum Distance-d Independent Set Problem on Unit Disk Graphs. In: Chen, J., Lu, P. (eds) Frontiers in Algorithmics. FAW 2018. Lecture Notes in Computer Science(), vol 10823. Springer, Cham. https://doi.org/10.1007/978-3-319-78455-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78455-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78454-0

  • Online ISBN: 978-3-319-78455-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics