A Parameterized Description of Force Output of Soft Arms in Full Workspace

  • Chengkai Xia
  • Yiming Li
  • Xiaotong ChenEmail author
  • Zhanchi Wang
  • Yusong Jin
  • Hao Jiang
  • Xiaoping Chen
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 751)


In this paper, aiming at fully taking advantage of soft manipulators working ability, we propose a parameterized approximating method to characterize their force output in full workspace. We define the Workspace-Load bearing capacity Cloud (WLC) of soft arms and present the method to calculate WLC in the three-dimensional space by linear fitting. At last, finite element analysis is used to validate its effectiveness in characterizing the force output of soft arms in full workspace.


Soft robot Force output description Workspace 



This research is supported by the National Natural Science Foundation of China under grant 61573333.


  1. 1.
    Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)CrossRefGoogle Scholar
  2. 2.
    Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117 (2008)CrossRefGoogle Scholar
  3. 3.
    Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)CrossRefGoogle Scholar
  4. 4.
    Majidi, C.: Soft robotics: a perspective current trends and prospects for the future. Soft Robot. 1(1), 5–11 (2014)CrossRefGoogle Scholar
  5. 5.
    Patel, S., Sobh, T.: Manipulator performance measures-a comprehensive literature survey. J. Intell. Robot. Syst. 77(3–4), 547 (2015)CrossRefGoogle Scholar
  6. 6.
    Korayem, M.H., Ghariblu, H.: Analysis of wheeled mobile flexible manipulator dynamic motions with maximum load carrying capacities. Robot. Auton. Syst. 48(2), 63–76 (2004)CrossRefGoogle Scholar
  7. 7.
    Wang, L.-T., Ravani, B.: Dynamic load carrying capacity of mechanical manipulators part i: problem formulation. J. Dyn. Syst. Meas. Control 110(1), 46–52 (1988)CrossRefGoogle Scholar
  8. 8.
    Yao, Y.L., Korayem, M.H., Basu, A.: Maximum allowable load of flexible manipulators for given dynamic trajectory. Robot. Comput-Integr. Manuf. 10(4), 301–309 (1993)CrossRefGoogle Scholar
  9. 9.
    Grissom, M.D., Chitrakaran, V., Dienno, D., Csencits, M., Pritts, M, Jones, B., McMahan, W., Dawson, D., Rahn, C., Walker, I.: Design and experimental testing of the octarm soft robot manipulator. In: Unmanned Systems Technology VIII, vol. 6230, p. 62301F. International Society for Optics and Photonics (2006)Google Scholar
  10. 10.
    Bodily, D.M., Allen, T.F., Killpack, M.D.: Multi-objective design optimization of a soft, pneumatic robot. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1864–1871. IEEE (2017)Google Scholar
  11. 11.
    Jiang, H., Liu, X., Chen, X., Wang, Z., Jin, Y., Chen, X.: Design and simulation analysis of a soft manipulator based on honeycomb pneumatic networks. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 350–356. IEEE (2016)Google Scholar
  12. 12.
    Grzesiak, A., Becker, R., Verl, A.: The bionic handling assistant: a success story of additive manufacturing. Assem. Autom 31(4), 329–333 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Chengkai Xia
    • 1
  • Yiming Li
    • 1
  • Xiaotong Chen
    • 2
    Email author
  • Zhanchi Wang
    • 2
  • Yusong Jin
    • 2
  • Hao Jiang
    • 2
  • Xiaoping Chen
    • 2
  1. 1.School of Engineering ScienceUniversity of Science and Technology of ChinaHefeiChina
  2. 2.School of Computer ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations