Advertisement

Robotizing the Bio-inspiration

  • Ahmad Mahmood TahirEmail author
  • Giovanna A. Naselli
  • Matteo Zoppi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 751)

Abstract

Imitating natural living beings remains a perpetual curiosity of human beings. The pursuit of replicating biological systems led humans to develop contemporary machines—the robots with diverse range of shapes, sizes, capabilities and applications. Such systems may exhibit strength, control and operation sustainability; however, rigidness of the hard underlying mechanical structures is one of the major constraints in achieving compliance like that of natural organisms and species. This constraint is required to be softened to create biological duos with enhanced structural compliance. This demarcation has led to a new corridor to craft biological mockups, and has made doors opened to exploit new materials, novel design methodologies and innovative control techniques. This paper is an exclusive appraisal to bio-inspired state-of-the-art developments conferring their design specific importance. The methodical study and survey of corresponding structural designs, actuation techniques, sensors, and materials is potentially useful to demonstrate the novelty of bio-inspired robotic developments. Keywords: Soft robotics, bio-inspiration, novelty, flexibility, softness and compliance.

References

  1. 1.
    Gellius, A., Beloe, W.: The Attic Nights of Aulus Gellius (Translated into English by the Rev. W. BELOE F.S.A., 1795, London), Book X, Chapter XII, vol. II, pp. 220–223. Printed for J. Johnson, London (1795)Google Scholar
  2. 2.
    Kostas, K.: The First Robot, Created in 400 BCE, Was A Steam-Powered Pigeon [Internet] (2014). Kostasvakouftsis.blogspot.it. https://kostasvakouftsis.blogspot.it/2014/04/first-robot-created-in-400-bce-was.html. Accessed 10 August 2016
  3. 3.
    Kotsanas, K.: The flying pigeon of archytas [Internet]. Museum of the ancient Greek technology. http://kotsanas.com/gb/exh.php?exhibit=2001001. Accessed 10 August 2016
  4. 4.
    Clarke, R.: Asimov’s laws of robotics: implications for information technology-Part I. Computer 26(12), 53–61 (1993)CrossRefGoogle Scholar
  5. 5.
    Industrial Robot Revenue Will Nearly Triple by 2025, Fueled by Chinese Demand [Internet]. http://www.prnewswire.com/news-releases/industrial-robot-revenue-will-nearly-triple-by-2025-fueled-by-chinese-demand-300389443.html. Accessed 22 June 2017
  6. 6.
    Alex, G.: Sales of industrial robots are surging. So what does this mean for human workers? [Internet]. https://www.weforum.org/agenda/2017/05/sales-of-industrial-robots-are-surging-so-what-does-this-mean-for-human-workers/. Accessed 22 June 2017
  7. 7.
    Akella, P., Cutkosky, M.: Manipulating with soft fingers: modeling contacts and dynamics. In: International Conference on Robotics and Automation, pp. 764–769. IEEE (1989)Google Scholar
  8. 8.
    Suzumori, K., Iikura, S., Tanaka, H.: Development of flexible microactuator and its applications to robotic mechanisms. In: International Conference on Robotics and Automation, pp. 1622–1627. IEEE (1991)Google Scholar
  9. 9.
    Suzumori, K., Iikura, S., Tanaka, H.: Flexible microactuator for miniature robots. In: Micro Electro Mechanical Systems, MEMS’91, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, pp. 204–209. IEEE (1991)Google Scholar
  10. 10.
    Suzumori, K.: Flexible microactuator: 1st report, static characteristics of 3 DOF actuator. Trans. Jpn Soc. Mech. Eng. Ser. C (in Japanese) 55, 2547–2552 (1989)CrossRefGoogle Scholar
  11. 11.
    Suzumori, K.: Flexible microactuator: 2nd report, dynamic characteristics of 3 DOF actuator. Trans. Jpn. Soc. Mech. Eng. Ser. C (in Japanese) 56, 1887–1893 1990CrossRefGoogle Scholar
  12. 12.
    Suzumori, K., Iikura, S., Tanaka, H.: Applying a flexible microactuator to robotic mechanisms. IEEE Control Syst. 12(1), 21–27 (1992)CrossRefGoogle Scholar
  13. 13.
    Suzumori, K., Kondo, F., Tanaka, H.: Micro-walking robot driven by flexible microactuator. J. Robot. Mechatron. 5(6), 537–541 (1993)CrossRefGoogle Scholar
  14. 14.
    Suzumori, K.: Elastic materials producing compliant robots. Robot. Auton. Syst. 18(1–2), 135–140 (1996)CrossRefGoogle Scholar
  15. 15.
    Toshiba Corporation: Press Releases 21 February, 1997 [Internet]. Toshiba.co.jp. (1997). https://www.toshiba.co.jp/about/press/1997_02/pr2101.htm. Accessed 13 September 2016
  16. 16.
    Suzumori, K., Miyagawa, T., Kimura, M., Hasegawa, Y.: Micro inspection robot for 1-in pipes. IEEE/ASME Trans. Mechatron. 4(3), 286–292 (1999)CrossRefGoogle Scholar
  17. 17.
    Suzumori, K., Maeda, T., Wantabe, H., Hisada, T.: Fiberless flexible microactuator designed by finite-element method. IEEE/ASME Trans. Mechatron. 2(4), 281–286 (1997)CrossRefGoogle Scholar
  18. 18.
    Suzumori, K., Koga, A., Haneda, R.: Microfabrication of integrated FMAs using stereo lithography. In: IEEE Workshop on Micro Electro Mechanical Systems, MEMS’94, pp. 136–141. IEEE (1994)Google Scholar
  19. 19.
    Suzumori, K., Koga, A., Kondo, F., Haneda, R.: Integrated flexible microactuator systems. Robotica 14(05), 493 (1996)CrossRefGoogle Scholar
  20. 20.
    Chou, C.-P., Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12(1), 90–102 (1996)Google Scholar
  21. 21.
    Hoggett, R.: 1957—“Artificial Muscle”—Joseph Laws McKibben (American) [Internet]. cyberneticzoo.com. (2012). http://cyberneticzoo.com/bionics/1957artificial-muscle-joseph-laws-mckibben-american/. Accessed 22 August 2016
  22. 22.
    Pack, R.T., Iskarous, M.: The use of the soft arm for rehabilitation and prosthetic. In: Proceedings of the Annual Conference RESNA 1994, pp. 472–475. RESNA Press (1994)Google Scholar
  23. 23.
    Google Patents: Robotic fluid-actuated muscle analogue. US Patent no. 5,021,064, 1991Google Scholar
  24. 24.
    Hamerlain, M.: An anthropomorphic robot arm driven by artificial muscles using a variable structure control. In: International Conference on Intelligent Robots and Systems 95, Human Robot Interaction and Cooperative Robots, pp. 550–555. IEEE (1995)Google Scholar
  25. 25.
    Groen, F., van der Smagt, P., Schulten, K.: Analysis and control of a rubbertuator arm. Biol. Cybern. 75(5), 433–440 (1996)CrossRefGoogle Scholar
  26. 26.
    Alford, W., Wilkes, D., Kawamura, K., Pack, R.: Flexible human integration for holonic manufacturing systems. In: Proceedings of the World Manufacturing Congress, pp. 53–62 (1997)Google Scholar
  27. 27.
    Wilkes, D., Pack, R., Alford, A., Kawamura, K.: HuDL, A design philosophy for socially intelligent service robots. American Association for Artificial Intelligence, AAAI Press, Technical Report, FS-97–02, pp. 140–145 (1997)Google Scholar
  28. 28.
    Cambron, M., Peters, II R., Wilkes, D., Christopher, J., Kawamura, K.: Human-centered robot design and the problem of grasping. In: The 3rd International Conference on Advanced Mechatronics ICAM’98-Innovative Mechatronics for the 21st Century, JSME, pp. 191–196 (1998)Google Scholar
  29. 29.
    Yamaha, Y., Iwanaga, Y., Fukunaga, M., Fujimoto, N., Ohta, E., Morizono, T., et al.: Soft viscoelastic robot skin capable of accurately sensing contact location of objects. In: IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI’99, pp. 105–110. IEEE (1999)Google Scholar
  30. 30.
    Hakozaki, M., Nakamura, K., Shinoda, H.: Telemetric artificial skin for soft robot. In: Transducers’99, pp. 844–847 (1999)Google Scholar
  31. 31.
    Bubic, F.: Flexible robotic links and manipulator trunks made thereform. US Patent no. 5,080,000 (1992)Google Scholar
  32. 32.
    Rus, D., Tolley, M.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)CrossRefGoogle Scholar
  33. 33.
    Iida, F., Laschi, C.: Soft robotics: challenges and perspectives. Procedia Comput. Sci. 7, 99–102 (2011)CrossRefGoogle Scholar
  34. 34.
    Ilievski, F., Mazzeo, A., Shepherd, R., Chen, X., Whitesides, G.: Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011)CrossRefGoogle Scholar
  35. 35.
    Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)CrossRefGoogle Scholar
  36. 36.
    Trimmer, B.A., Ti Lin, H., Baryshyan, A., Leisk, G.G., Kaplan, D.L.: Towards a biomorphic soft robot: design constraints and solutions. In: 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 599–605. IEEE (2012)Google Scholar
  37. 37.
    Klute, G.K., Czerniecki, J.M., Hannaford, B.: McKibben artificial muscles: pneumatic actuators with biomechanical intelligence. In: Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 221–226. IEEE (1999)Google Scholar
  38. 38.
    Rieffel, J., Knox, D., Smith, S., Trimmer, B.: Growing and evolving soft robots. Artif. Life 20(1), 143–162 (2014)CrossRefGoogle Scholar
  39. 39.
    Suzumori, K., Maeda, T., Wantabe, H., Hisada, T.: Fiberless flexible microactuator designed by finite-element method. IEEE/ASME Trans. Mechatron. 2(4), 281–286 (1997)CrossRefGoogle Scholar
  40. 40.
    Stone, R.S.W., Brett, P.N.: A flexible pneumatic actuator for gripping soft irregular shaped objects. In: IEE Colloquium on Innovative Actuators for Mechatronic Systems, pp. 13/1–13/3. IEE (1995)Google Scholar
  41. 41.
    Bowler, C.J., Caldwell, D.G., Medrano-Cerda, G.A.: Pneumatic muscle actuators: musculature for an anthropomorphic robot arm. In: IEE Colloquium on Actuator Technology: Current Practice and New Developments, (Digest No: 1996/110), pp. 8/1–8/6. IEE (1996)Google Scholar
  42. 42.
    Akella, P., Cutkosky, M.: Manipulating with soft fingers: modeling contacts and dynamics. In: International Conference on Robotics and Automation, pp. 764–769. IEEE (1989)Google Scholar
  43. 43.
    Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: International Conference on Robotics and Automation, pp. 4975–4980. IEEE (2007)Google Scholar
  44. 44.
    Pritts, M.B., Rahn, C.D.: Design of an artificial muscle continuum robot. In: International Conference on Robotics and Automation, ICRA’04, pp. 4742–4746. IEEE (2004)Google Scholar
  45. 45.
    McMahan, W., Chitrakaran, V., Csencsits, M., Dawson, D., Walker, I.D., Jones, B.A., et al.: Field trials and testing of the OctArm continuum manipulator. In: International Conference on Robotics and Automation, ICRA 2006, pp. 2336–2341. IEEE (2006)Google Scholar
  46. 46.
    Grissom, M.D., Chitrakaran, V., Dienno, D., Csencits, M., Pritts, M., Jones, B., et al.: Design and experimental testing of the OctArm soft robot manipulator. In: Defense and Security Symposium, Proceedings of the SPIE 6230, Unmanned Systems Technology VIII, pp. 62301F-62301F-10. International Society for Optics and Photonics (2006)Google Scholar
  47. 47.
    Trivedi, D., Dienno, D., Rahn, C.: Optimal, model-based design of soft robotic manipulators. J. Mech. Des. 130(9), 091402 (2008)CrossRefGoogle Scholar
  48. 48.
    Trivedi, D., Lotfi, A., Rahn, C.: Geometrically exact models for soft robotic manipulators. IEEE Trans. Rob. 24(4), 773–780 (2008)CrossRefGoogle Scholar
  49. 49.
    Trivedi, D., Rahn, C.: Model-based shape estimation for soft robotic manipulators: the planar case. J. Mech. Robot. 6(2), 021005 (2014)CrossRefGoogle Scholar
  50. 50.
    Udupa, G., Sreedharan, P., Aditya, K.: Robotic gripper driven by flexible microactuator based on an innovative technique. In: Workshop on Advanced Robotics and its Social Impacts (ARSO), pp. 111–116. IEEE (2010)Google Scholar
  51. 51.
    Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., Laschi, C.: Design concept and validation of a robotic arm inspired by the octopus. Mater. Sci. Eng. C 31(6), 1230–1239 (2011)CrossRefGoogle Scholar
  52. 52.
    Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., Laschi, C.: A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm. In: 2012 International Conference on Robotics and Automation (ICRA), pp. 3819–3824. IEEE (2012)Google Scholar
  53. 53.
    Obaji, M.O., Zhang, S.: Investigation into the force distribution mechanism of a soft robot gripper modeled for picking complex objects using embedded shape memory alloy actuators. In: 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 84–90. IEEE (2013)Google Scholar
  54. 54.
    Robot and the Elastic Mind: Projects—Athlete Robot [Internet]. Isi.imi.i.u-tokyo.ac.jp. http://www.isi.imi.i.utokyo.ac.jp/~niiyama/projects/proj_athlete_en.html. Accessed 6 September 2016
  55. 55.
    Sasaki, D., Noritsugu, T., Takaiwa, M.: Development of active support splint driven by pneumatic soft actuator (ASSIST). In: International Conference on Robotics and Automation, pp. 520–525. IEEE (2005)Google Scholar
  56. 56.
    Sasaki, D., Noritsugu, T., Takaiwa, M., Kataoka, Y.: Development of pneumatic wearable power assist device for human arm “ASSIST”. In: 2005 Proceedings of the JFPS International Symposium on Fluid Power, vol. 2005, no. 6, pp. 202–207 (2005)CrossRefGoogle Scholar
  57. 57.
    Jung, K., Koo, J., Nam, J., Lee, Y., Choi, H.: Artificial annelid robot driven by soft actuators. Bioinspir. Biomim. 2(2), S42–S49 (2007)CrossRefGoogle Scholar
  58. 58.
    Yamamoto, Y., Kure, K., Iwai, T., Kanda, T., Suzumori, K.: Flexible displacement sensor using piezoelectric polymer for intelligent FMA. In: International Conference on Intelligent Robots and Systems IEEE/RSJ, pp. 765–770. IEEE (2007)Google Scholar
  59. 59.
    Kure, K., Kanda, T., Suzumori, K., Wakimoto, S.: Flexible displacement sensor using injected conductive paste. Sens. Actuators, A 143(2), 272–278 (2008)CrossRefGoogle Scholar
  60. 60.
    Cianchetti, M., Mattoli, V., Mazzolai, B., Laschi, C., Dario, P.: A new design methodology of electrostrictive actuators for bio-inspired robotics. Sens. Actuators B: Chem. 142(1), 288–297 (2009)CrossRefGoogle Scholar
  61. 61.
    Laschi, C., Mazzolai, B., Mattoli, V., Cianchetti, M., Dario, P.: Design of a biomimetic robotic octopus arm. Bioinspir. Biomim. 4(1), 015006 (2009)CrossRefGoogle Scholar
  62. 62.
    Follador, M., Cianchetti, M., Arienti, A., Laschi, C.: A general method for the design and fabrication of shape memory alloy active spring actuators. Smart Mater. Struct. 21(11), 115029 (2012)CrossRefGoogle Scholar
  63. 63.
    Cianchetti, M., Licofonte, A., Follador, M., Rogai, F., Laschi, C.: Bioinspired soft actuation system using shape memory alloys. Actuators 3(3), 226–244 (2014)CrossRefGoogle Scholar
  64. 64.
    Bao, G., Cai, S., Wang, Z., Xu, S., Huang, P., Yang, Q., et al.: Flexible pneumatic robotic actuator FPA and its applications. In: International Conference on Robotics and Biomimetics (ROBIO), pp. 867–872. IEEE (2013)Google Scholar
  65. 65.
    Shintake, J., Schubert, B., Rosset, S., Shea, H., Floreano, D.: Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1097–1102. IEEE (2015)Google Scholar
  66. 66.
    Feng, G.H., Yen, S.C.: Micromanipulation tool replaceable soft actuator with gripping force enhancing and output motion converting mechanisms. In: 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 1877–1880. IEEE (2015)Google Scholar
  67. 67.
    Bertetto, A.M., Ruggiu, M.: In-pipe inch-worm pneumatic flexible robot. In: 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1226–1231. IEEE (2001)Google Scholar
  68. 68.
    Shepherd, R., Ilievski, F., Choi, W., Morin, S., Stokes, A., Mazzeo, A., et al.: Multigait soft robot. Proc. Natl. Acad. Sci. 108(51), 20400–20403 (2011)CrossRefGoogle Scholar
  69. 69.
    Bogue, R.: Flexible and soft robotic grippers: the key to new markets? Ind. Robot: Int. J. 43(3), 258–263 (2016)CrossRefGoogle Scholar
  70. 70.
    Takashi, Y., Naoyuki, I., Makoto, M., Yoshinobu, A.: Picking up operation of thin objects by robot arm with two-fingered parallel soft gripper. In: Workshop on Advanced Robotics and its Social Impacts (ARSO), pp. 7–12. IEEE (2012)Google Scholar
  71. 71.
    Cianchetti, M.: The octopus as paradigm for soft robotics. In: 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 515–516. IEEE (2013)Google Scholar
  72. 72.
    Calisti, M., Arienti, A., Renda, F., Levy, G., Hochner, B., Mazzolai, B., et al.: Design and development of a soft robot with crawling and grasping capabilities. In: International Conference on Robotics and Automation (ICRA), pp. 4950–4955. IEEE (2012)Google Scholar
  73. 73.
    Margheri, L., Laschi, C., Mazzolai, B.: Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspir. Biomim. 7(2), 025004 (2012)CrossRefGoogle Scholar
  74. 74.
    Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P., Laschi, C.: Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspir. Biomim. 7(2), 025005 (2012)CrossRefGoogle Scholar
  75. 75.
    Renda, F., Cianchetti, M., Giorelli, M., Arienti, A., Laschi, C.: A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspir. Biomim. 7(2), 025006 (2012)CrossRefGoogle Scholar
  76. 76.
    Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., Laschi, C.: A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm. In: International Conference on Robotics and Automation (ICRA), pp. 3819–3824. IEEE (2012)Google Scholar
  77. 77.
    Kang, R., Branson, D., Zheng, T., Guglielmino, E., Caldwell, D.: Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures. Bioinspir. Biomim. 8(3), 036008 (2013)CrossRefGoogle Scholar
  78. 78.
    Kang, R., Guglielmino, E., Zullo, L., Branson, D., Godage, I., Caldwell, D.: Embodiment design of soft continuum robots. Adv. Mech. Eng. 8(4), 1687814016643302 (2016)CrossRefGoogle Scholar
  79. 79.
    Cianchetti, M., Ranzani, T., Gerboni, G., Nanayakkara, T., Althoefer, K., Dasgupta, P., et al.: Soft robotics technologies to address shortcomings in Today’s minimally invasive surgery: the STIFF-FLOP approach. Soft Robot. 1(2), 122–131 (2014)CrossRefGoogle Scholar
  80. 80.
    Noh, Y., Sareh, S., Back, J., Würdemann, H.A., Ranzani, T., Secco, E.L., et al.: A three-axial body force sensor for flexible manipulators. In: International Conference on Robotics and Automation (ICRA), pp. 6388–6393. IEEE (2014)Google Scholar
  81. 81.
    Ranzani, T., Cianchetti, M., Gerboni, G., Falco, I., Menciassi, A.: A soft modular manipulator for minimally invasive surgery: design and characterization of a single module. IEEE Trans. Rob. 32(1), 187–200 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ahmad Mahmood Tahir
    • 1
    Email author
  • Giovanna A. Naselli
    • 1
  • Matteo Zoppi
    • 1
  1. 1.DIME PMAR, University of GenovaGenoaItaly

Personalised recommendations