Advertisement

Abstracted Models for Scheduling of Event-Triggered Control Data Traffic

Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 475)

Abstract

Event-Triggered control (ETC) implementations have been proposed to overcome the inefficiencies of periodic (time-triggered) controller designs, namely the over-exploitation of the computing and communication infrastructure. However, the potential of aperiodic Event-Triggered techniques to reuse the freed bandwidth, and to reduce energy consumption on wireless settings, has not yet been truly reached. The main limitation to fully exploit ETC’s great traffic reductions lies on the difficulty to predict the occurrence of controller updates, forcing the use of conservative scheduling approaches in practice. Having a model of the timing behaviour of ETC is of paramount importance to enable the construction of model-based schedulers for such systems. Furthermore, on wireless control systems these schedulers allow to tightly schedule listening times, thus reducing energy consumption. In this chapter we describe an approach to model ETC traffic employing ideas from the symbolic abstractions literature. The resulting models of traffic are timed-automata. We also discuss briefly how these models can be employed to automatically synthesize schedulers.

Keywords

Event-triggered Control (ETC) Schedule-based Models Updated Account Symbolic Abstraction Timed Automata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Araújo, J., Mazo Jr., M., Anta, A., Tabuada, P., Johansson, K.H.: System architectures, protocols and algorithms for aperiodic wireless control systems. IEEE Trans. Ind. Inf. 10(1), 175–184 (2014)CrossRefGoogle Scholar
  2. 2.
    Caccamo, M., Buttazzo, G., Sha, L.: Elastic feedback control. In: Proceedings 12th Euromicro Conference on Real-Time Systems, pp. 121–128. (2000)Google Scholar
  3. 3.
    Bhattacharya, R., Balas, G.: Anytime control algorithm: model reduction approach. J. Guid. Control Dyn. 27(5), 767–776 (2004)CrossRefGoogle Scholar
  4. 4.
    Al-Areqi, S., Gorges, D., Reimann, S., Liu, S.: Event-based control and scheduling codesign of networked embedded control systems, pp. 5299–5304. (2013)Google Scholar
  5. 5.
    Kolarijani, A.S., Mazo Jr., M.: A formal traffic characterization of LTI event-triggered control systems. IEEE Trans. Control Netw. Syst. 5(1), 274–283. (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Abdeddaïm, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor. Comput. Sci. 354(2), 272–300 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fiter, C., Hetel, L., Perruquetti, W., Richard, J.-P.: A state dependent sampling for linear state feedback. Automatica 48(8), 1860–1867 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hetel, L., Daafouz, J., Lung, C.: LMI control design for a class of exponential uncertain systems with application to network controlled switched systems. In: Proceedings of the American Control Conference, pp. 1401–1406. (2007)Google Scholar
  9. 9.
    Chutinan, A., Krogh, B.: Computing polyhedral approximations to flow pipes for dynamic systems. In: Proceedings 37th IEEE Conference on Decision and Control, vol. 2, pp. 2089–2094. (1998)Google Scholar
  10. 10.
    Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr E., Puech C. (eds.) Proceedings of the 12th Symposium on Theoretical Aspects of Computer Science, vol. 900, pp.229–242 (1995)CrossRefGoogle Scholar
  12. 12.
    Uppaal tiga. [Online]. Available: http://people.cs.aau.dk/~adavid/tiga/
  13. 13.
    Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer, London, Limited (2009)CrossRefGoogle Scholar
  14. 14.
    Ewald, G.: Graduate texts in mathematics. In: Combinatorial Convexity And Algebraic Geometry. Springer, New York (1996)CrossRefGoogle Scholar
  15. 15.
    Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. 111(2), 193–244 (1994)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. Lect. Concurr. Petri Nets 3098, 87–124 (2004)CrossRefGoogle Scholar
  17. 17.
    Behrmann, G., David, A., Larsen, K.: A tutorial on Uppaal. Form. Methods Des. Real-Time Syst. 3185, 200–236 (2004)CrossRefGoogle Scholar
  18. 18.
    Chatain, T., David, A., Larsen, K.G.: Playing games with timed games. IFAC Proc. Vol. 42(17), 238–243 (2009)CrossRefGoogle Scholar
  19. 19.
    Adzkiya, D., Mazo Jr., M.: Scheduling of event-triggered networked control systems using timed game automata. arXiv:1610.03729 (2016)
  20. 20.
    Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Anta, A., Tabuada, P.: To sample or not to sample: self-triggered control for nonlinear systems. IEEE Trans. Autom. Control 55, 2030–2042 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kvasnica, M., Grieder, P., Baotic, M., Morari, M.: Multi-parametric toolbox (MPT). In: HSCC, pp. 448–462. Springer, Berlin (2004)CrossRefGoogle Scholar
  23. 23.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1), 3–21 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bin, L., Rongben, W., Jiangwei, C.: A new optimal controller for intelligent vehicle headway distance. In: IEEE Intelligent Vehicle Symposium, vol. 2, pp. 387–392 (2002)Google Scholar
  25. 25.
    Wang, X., Lemmon, M.D.: Event-triggering in distributed networked control systems. IEEE Trans. Autom. Control 56(3), 586–601 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zamani, M., Dey, S., Mohamed, S., Dasgupta, P., Mazo Jr., M.: Scheduling of controllers’ update-rates for residual bandwidth utilization. In: 14th International Conference on Formal Modeling and Analysis of Timed Systems, LNCS, vol. 9884, pp. 85–101 (2016)Google Scholar
  27. 27.
    Heemels, W.H., Donkers, M., Teel, A.R.: Periodic event-triggered control for linear systems. IEEE Trans. Autom. Control 58(4), 847–861 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-Vincentelli, A.L.: Ariadne: a framework for reachability analysis of hybrid automata. In: Proceedings of the International Syposium on Mathematical Theory of Networks and Systems (2006)Google Scholar
  29. 29.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: Spaceex: scalable verification of hybrid systems. Comput. Aided Verif. 379–395 (2011)Google Scholar
  30. 30.
    Althoff, M.: An introduction to CORA 2015. In: ARCH@ CPSWeek, pp. 120–151 (2015)Google Scholar
  31. 31.
    Di Benedetto, M.D., Di Gennaro, S., D’Innocenzo, A.: Digital self-triggered robust control of nonlinear systems. Int. J. Control 86(9), 1664–1672 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Institut Teknologi Sepuluh NopemberSurabayaIndonesia

Personalised recommendations