Skip to main content

Decreasing Influence of the Error Due to Acquired Inhomogeneity of Sensors by the Means of Artificial Intelligence

  • Chapter
  • First Online:
Book cover Practical Issues of Intelligent Innovations

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 140))

Abstract

Sensors usually have the biggest error among all components in a measuring system. The paper considers the application of the methods of artificial intelligence, in particular, neural networks and data science applications for sensor data processing. The main attention is focused on improvement of measurement accuracy when using inaccurate sensors. The abovementioned methods illustrated on the example of improvement of measurement accuracy of the most widely used temperature sensor—the thermocouple. Neural networks and other methods of artificial intelligence ensure the improvement of accuracy of temperature measurements by an order of magnitude. However, they require considerable complication in both hardware and software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Derde, M.P., Massart, D.L.: Supervised pattern recognition: the ideal method? Analytica Chimica Acta 191, 1–16 (1986)

    Article  Google Scholar 

  2. Turchenko, I., Osolinsky, O., Kochan, V., Sachenko, A., Tkachenko, R., Svyatnyy, V., Komar, M.: Approach to neural-based identification of multisensor conversion characteristic. In: Proceedings of IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 21–23 Sept 2009, Rende, Italy, pp. 27–31

    Google Scholar 

  3. Voschinin, A., Skibitski, N.: Interval calibration model of multisensor system. Computing 2(2), 82–86 (2003)

    Google Scholar 

  4. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York (1994)

    Google Scholar 

  5. Kroese, B.: An Introduction to Neural Networks. University of Amsterdam, Amsterdam (1996)

    Google Scholar 

  6. Turchenko, V., Kochan, V., Sachenko, A.: Estimation of computational complexity of sensor accuracy improvement algorithm based on neural networks. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) Lecture Notes in Computing Science, vol. 2130, pp. 743–748. Springer (2001)

    Chapter  Google Scholar 

  7. Scervini, M., Rae, C.: An improved nickel based mims thermocouple for high temperature gas turbine applications. J. Eng. Gas Turbines Power 135, 091601-1–091601-6 (2013)

    Article  Google Scholar 

  8. Scervini, M., Rae, C., Lindley, B.: Transmutation of thermocouples in thermal and fast nuclear reactors. In: 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA), Marseille, France, pp. 10–17 (2013)

    Google Scholar 

  9. Roshchupkin, O., Smid, R., Kochan, V., Sachenko, A.: Reducing the calibration points of multisensors. In: Proceedings of the 9th IEEE International Multi-conference on Systems, Signals and Devices (SSD’2012), Chemnitz, Germany, 20–23 March 2012, pp. 1–6. Digital Object Identifier. https://doi.org/10.1109/ssd.2012.6197987

  10. Webster, J.: Measurement, instrumentation, and sensors handbook. CRCnetBase (1999). http://www.crcnetbase.com/isbn/9780415876179

  11. International Electrotechnical Commission: Thermocouples. Part 2: Tolerances. International standard IEC 584-2, Geneve (1989)

    Google Scholar 

  12. Glowacz, A., Glowacz, A., Korohoda, P.: Recognition of monochrome thermal images of synchronous motor with the application of binarization and nearest mean classifier. Arch. Metall. Mater. 59(1), 31–34 (2014)

    Article  Google Scholar 

  13. Maruda, R.W., Krolczyk, G.M., Feldshtein, E., Pusavec, F., Szydlowski, M., Legutko, S., Sobczak-Kupiec, A.: A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int. J. Mach. Tools Manuf. 100, 81–92 (2016)

    Article  Google Scholar 

  14. Glowacz, A., Glowacz, A., Glowacz, Z.: Recognition of monochrome thermal images of synchronous motor with the application of quadtree decomposition and backprop-agation neural network. Maint. Reliab. 16(1), 92–96 (2014)

    Google Scholar 

  15. Temperature sensor solutions. www.thermo-electra.com

  16. Kortvelyessy, L.: Thermoelement Praxis, 3rd edn. Vulkan-Verlag, Essen (1998)

    Google Scholar 

  17. Sloneker, K.C.: Life expectancy study of small diameter type E, K, and N mineral-insulated thermocouples above 1000 °C in air. Int. J. Thermophys. 32(1–2), 537–547 (2011)

    Article  Google Scholar 

  18. Southworth, D.J.: Temperature calibration with Isotech block baths. Handbook of Isothermal Corporation Limited (1999)

    Google Scholar 

  19. Sloneker, K.C.: Thermocouple inhomogeneity. Ceram. Ind. Mag. 159(4), 13–18 (2009)

    Google Scholar 

  20. Holmsten, M., Ivarsson, J., Falk, R., Lidbeck, M., Josefson, L.-E.: Inhomogeneity measurements of long thermocouples using a short movable heating zone. Int. J. Thermophys. 29(3), 915–925 (2008)

    Article  Google Scholar 

  21. Temperature web portal. http://temperatures.ru/pages/termoelektricheskie_termometry

  22. Brignell, J.E.: Digital compensation of sensors. J. Phys. E: Sci. Instrum. 20(9), 1097–1102 (1987)

    Article  Google Scholar 

  23. Kirenkov, I.: Some laws of the thermoelectric inhomogeneity. Research in the field of temperature measurements, pp. 11–15. VNIIM, Moscow (1976). (in Russian)

    Google Scholar 

  24. Reference materials. http://www.omega.com/temperature/Z/pdf/z016.pdf

  25. Zvizdic, D., Sestan, D.: Zinc-filled multi-entrance fixed point. Int. J. Thermophys. 36(2), 336–346 (2015)

    Article  Google Scholar 

  26. Kochan, O., Kochan, R., Bojko, O., Chyrka, M.: Temperature measurement system based on thermocouple with controlled temperature field. In: Proceedings of the IEEE International Workshop on Intelligent Data Acquisition and Advancing Computing Systems (IDAACS’2007), Dortmund, Germany, pp. 47–51 (2007)

    Google Scholar 

  27. Sachenko, A., Kochan, V., Turchenko, V.: Instrumentation for gathering data. IEEE Instrum. Meas. Mag. 6(3), 34–40 (2003)

    Article  Google Scholar 

  28. Jun, S., Kochan, O.: The mechanism of the occurrence of acquired thermoelectric inhomogeneity of thermocouples and its effect on the result of temperature measurement. Meas. Tech. 57(10), 1160–1166 (2015)

    Article  Google Scholar 

  29. Kochan, R., Berezky, O., Karachka, A., Bojko, O., Maruschak, I.: Development of the integrating analogue to digital converter for distributive data acquisition systems with improved noise immunity. IEEE Trans. Instrum. Meas. 51(1), 96–101 (2002)

    Article  Google Scholar 

  30. Jun, S., Kochan, O., Kochan, V., Wang, C.: Development and investigation of the method for compensating thermoelectric inhomogeneity error. Int. J. Thermophys. 37(1), 1–14 (2016)

    Google Scholar 

  31. Lienhard, J. IV, Lienhard, J. V: A heat transfer textbook. Phlogiston Press (2008)

    Google Scholar 

  32. http://conceptalloys.com/electrical-resistance-alloys-chromel-c113-alloy/

  33. Vasyl’kiv, N., Kochan, O., Kochan, R., Chyrka, M.: The control system of the profile of temperature field. In: Proceedings of the IEEE International Workshop (Rende (Cosenza)) Intelligent Data Acquisition and Advancing Computing Systems, Rende, Cosenza, Italy, pp. 201–206 (2009)

    Google Scholar 

  34. Kochan, O., Jun, S., Kochan, V.: Decreasing of thermocouple inhomogeneity impact on temperature measurement error. In: Proceedings of the 13th IMEKO TC10 Workshop on Technical Diagnostics Advanced Measurement Tools in Technical Diagnostics for Systems’ Reliability and Safety 2014, Warsaw, Poland, pp. 105–110 (2014)

    Google Scholar 

  35. Jotsov, V.: New proposals for knowledge and data driven applications in security systems. In: Sgurev, V., Yager, R., Kacprzyk, J., Jotsov, V. (eds.) Innovative Issues in Intelligent Systems, Studies in Computational Intelligence, vol. 623, pp. 231–294. Springer, Berlin, Heidelberg (2016)

    MATH  Google Scholar 

  36. TRIZ Innovation Portal. http://www.innovation-portal.info/resources/triz/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Jotsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jotsov, V., Kochan, O., Jun, S. (2018). Decreasing Influence of the Error Due to Acquired Inhomogeneity of Sensors by the Means of Artificial Intelligence. In: Sgurev, V., Jotsov, V., Kacprzyk, J. (eds) Practical Issues of Intelligent Innovations. Studies in Systems, Decision and Control, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-78437-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78437-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78436-6

  • Online ISBN: 978-3-319-78437-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics