Advertisement

Hexagonal Extensions of Toroidal Maps and Hypermaps

  • Maria Elisa Fernandes
  • Dimitri Leemans
  • Asia Ivić Weiss
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 234)

Abstract

The rank 3 concept of a hypermap has recently been generalized to a higher rank structure in which hypermaps can be seen as “hyperfaces” but very few examples can be found in literature. We study finite rank 4 structures obtained by hexagonal extensions of toroidal hypermaps. Many new examples are produced that are regular or chiral, even when the extensions are polytopal. We also construct a new infinite family of finite nonlinear hexagonal extensions of the tetrahedron.

Keywords

Regularity Chirality Thin geometries Hypermaps Abstract polytopes 

2000 Math Subj. Class:

52B11 20D06 

Notes

Acknowledgements

The authors would like to thank two anonymous referees for their numerous helpful and insightful comments. This research was supported by a Marsden grant (UOA1218) of the Royal Society of New Zealand, by NSERC and by the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia), through CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013.

References

  1. 1.
    F. Buekenhout, A.M. Cohen, Diagram Geometry. Related to classical groups and buildings. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 57 (Springer, Heidelberg, 2013), xiv+592 ppGoogle Scholar
  2. 2.
    J. Charles, Colbourn and Asia Ivić Weiss. A census of regular 3-polystroma arising from honeycombs. Discrete Math. 50, 29–36 (1984)MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Conder, P. Dobcsányi, Determination of all regular maps of small genus. J. Combin. Theory Ser. B 81, 224–242 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Conder, I. Hubard, T. Pisanski, Constructions for chiral polytopes. J. Lond. Math. Soc. 2(77), 115–129 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Conder’s, website. http://www.math.auckland.ac.nz/~conder/. Last accessed 21 Sept 2014
  6. 6.
    J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups (Oxford U.P., Oxford, 1985)zbMATHGoogle Scholar
  7. 7.
    H.S.M. Coxeter, Configurations and maps. Rep. Math. Colloq. 8, 18–38 (1948)MathSciNetzbMATHGoogle Scholar
  8. 8.
    H.S.M. Coxeter, Twisted Honeycombs, in Regional Conf. Ser. In Math. (American Mathematical Society, Providence, RI, 1970)Google Scholar
  9. 9.
    H.S.M. Coxeter, W.O.J. Moser, Generators and Relations for Discrete Groups, volume 14 of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 4th edn. (Springer, Berlin, 1980)Google Scholar
  10. 10.
    H.S.M. Coxeter, G.C. Shephard, Regular \(3\)-complexes with toroidal cells. J. Comb. Theory Ser. B 22(2), 131–138 (1977)MathSciNetCrossRefGoogle Scholar
  11. 11.
    L. Danzer, E. Schulte, Regulare Inzidenzkomplexe I. Geom. Dedicata 13, 295–308 (1982)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Dehon, Classifying geometries with Cayley. J. Symbolic Comput. 17(3), 259–276 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Elliott, D. Leemans, E. O’Reilly-Regueiro, Chiral polyhedra and projective lines. Int. J. Math. Stat. 16(1), 45–52 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    M.E. Fernandes, D. Leemans, A.I. Weiss, Highly symmetric hypertopes. Aequationes Math. 90, 1045–1067 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Garbe, Über die Regularen Zerlegungen geschlossener orientierbarer Flächen. J. Reine. Angew. Math. 237, 39–55 (1969)MathSciNetzbMATHGoogle Scholar
  16. 16.
    B. Grunbaum, Regularity of graphs, complexes and designs, in Problèmes Combinatoires et Théorie des Graphes, Coll. Internat. CNRS, No. 260, (Orsay, 1977), pp. 191–197Google Scholar
  17. 17.
    M.I. Hartley, I. Hubard, D. Leemans, Two atlases of abstract chiral polytopes for small groups. Ars Math. Contemp. 5, 371–382 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    L. Heffter, Ueber Metacyklische Gruppen und Nachbarcnfigurationem. Math. Ann. 50, 261–268 (1898)MathSciNetCrossRefGoogle Scholar
  19. 19.
    I. Hubard, D. Leemans, Chiral polytopes and Suzuki simple groups, in Rigidity and Symmetry vol 70, ed. by R. Connelly et al. (Fields Institute Communications, 2014), pp. 155–175Google Scholar
  20. 20.
    D. Leemans, J. Moerenhout, Chiral polyhedra arising from almost simple groups with socle \(PSL(2, q)\). J. Algebraic Combin. 44, 293–323 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Leemans, L. Vauthier, An atlas of abstract regular polytopes for small groups. Aequationes Math. 72, 313–320 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    P. McMullen, E. Schulte, Locally toroidal regular polytopes of rank \(4\). Comment. Math. Helv. 67(1), 77–118 (1992)MathSciNetCrossRefGoogle Scholar
  23. 23.
    P. McMullen, E. Schulte, in Abstract Regular Polytopes, vol. 92, Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 2002)Google Scholar
  24. 24.
    P. McMullen, E. Schulte, Locally unitary groups and regular polytopes. Adv. Appl. Math. 29(1), 1–45 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    B. Monson, A.I. Weiss, Eisenstein integers and related \(C\)-groups. Geom. Dedicata 66, 99–117 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    B. Nostrand, E. Schulte, Chiral polytopes from hyperbolic honeycombs. Discrete Comput. Geom. 13, 17–39 (1995)MathSciNetCrossRefGoogle Scholar
  27. 27.
    D. Pellicer, CPR graphs and regular polytopes. European J. Combin. 29(1), 59–71 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    D. Pellicer, A construction of higher rank chiral polytopes. Discrete Math. 310, 1222–1237 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    E. Schulte, A.I. Weiss, Chiral polytopes, in Applied Geometry and Discrete Mathematics, volume 4 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci. (American Mathematical Society, Providence, RI, 1991), pp. 493–516Google Scholar
  30. 30.
    E. Schulte, A.I. Weiss, Chirality and projective linear groups. Discrete Math. 131, 221–261 (1994)MathSciNetCrossRefGoogle Scholar
  31. 31.
    E. Schulte, A.I. Weiss, Free extensions of chiral polytopes. Canad. J. Math. 47, 641–654 (1995)MathSciNetCrossRefGoogle Scholar
  32. 32.
    F.A. Sherk, A family of regular maps of type \(\{6, 6\}\). Canad. Math. Bull. 5, 13–20 (1962)MathSciNetCrossRefGoogle Scholar
  33. 33.
    D.M.Y. Sommerville, An Introduction to the Geometry of n Dimensions (Methuen, London, 1929)zbMATHGoogle Scholar
  34. 34.
    J. Tits, Sur les analogues algébriques des groupes semi-simples complexes. Colloque d’algébre supérieure, tenu á Bruxelles du 19 au 22 décembre, Centre Belge de Recherches Mathématiques, pp. 261–289, Établissements Ceuterick (Louvain, Librairie Gauthier-Villars, Paris, 1956), p. 1957Google Scholar
  35. 35.
    T.R.S. Walsh, Hypermaps versus bipartite maps. J. Combinatorial Theory Ser. B 18(2), 155–163 (1975)MathSciNetCrossRefGoogle Scholar
  36. 36.
    C. Weber, H. Seifert, Die beiden Dodekaederräume. Mat. Z. 37, 237–253 (1933)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maria Elisa Fernandes
    • 1
  • Dimitri Leemans
    • 2
    • 3
  • Asia Ivić Weiss
    • 4
  1. 1.Center for Research and Development in Mathematics and Applications, Department of MathematicsUniversity of AveiroAveiroPortugal
  2. 2.Department of MathematicsUniversity of AucklandAucklandNew Zealand
  3. 3.Département de Mathématique, C.P. 216 - Algèbre et CombinatoireUniversité Libre de BruxellesBrusselsBelgium
  4. 4.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations