Advertisement

Vertex-Transitive Haar Graphs That Are Not Cayley Graphs

  • Marston D. E. Conder
  • István Estélyi
  • Tomaž Pisanski
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 234)

Abstract

In a recent paper in Electron. J. Combin. 23 (2016), Estélyi and Pisanski raised a question whether there exist vertex-transitive Haar graphs that are not Cayley graphs. In this note we construct an infinite family of trivalent Haar graphs that are vertex-transitive but non-Cayley. The smallest example has 40 vertices and is the well-known Kronecker cover over the dodecahedron graph G(10, 2), occurring as the graph ‘40’ in the Foster census of connected symmetric trivalent graphs.

Keywords

Haar graph Cayley graph Vertex-transitive graph 

MSC 2010

05E18 (primary) 20B25 (secondary) 

Notes

Acknowledgements

We acknowledge with gratitude the use of the Magma system [3] for helping to find and analyse examples. We would also like to thank Klavdija Kutnar and István Kovács for fruitful conversations and for pointing out several crucial references, and the referees for helpful comments, and in particular, one of the referees for suggesting the family of 2-arc-regular covers of the Pappus graph as another potential source of examples.

References

  1. 1.
    A. Betten, G. Brinkmann, T. Pisanski, Counting symmetric configurations \(\nu _3\), in Proceedings of the 5th Twente Workshop on Graphs and Combinatorial Optimization (Enschede, 1997), Discrete Appl. Math. 99(1–3), 331–338 (2000)Google Scholar
  2. 2.
    M. Boben, B. Grünbaum, T. Pisanski, A. Žitnik, Small triangle-free configurations of points and lines. Discrete Comput. Geom. 35(3), 405–427 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: the user language. J. Symbolic Comput. 24, 235–265 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    M.D.E. Conder, Trivalent\((\)cubic\()\)symmetric graphs on up to 10000 vertices, available at http://www.math.auckland.ac.nz/~conder/symmcubic10000list.txt
  5. 5.
    M. Conder, P. Dobcsányi, Trivalent symmetric graphs on up to 768 vertices. J. Combin. Math. Combin. Comput. 40, 41–63 (2002)MathSciNetMATHGoogle Scholar
  6. 6.
    M. Conder, R. Nedela, A refined classification of symmetric cubic graphs. J. Algebra 322, 722–740 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    I.Z. Bouwer, W.W. Chernoff, B. Monson, Z. Star, The Foster Census (Charles Babbage Research Centre, Winnipeg, 1988)Google Scholar
  8. 8.
    S.F. Du, M.Y. Xu, A classification of semi-symmetric graphs of order \(2pq,\) Comm. Algebra 28(6), 2685–2715 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    I. Estélyi, T. Pisanski, Which Haar graphs are Cayley graphs? Electron. J. Combin. 23(Paper 3.10), 13pp (2016)Google Scholar
  10. 10.
    G. Exoo, R. Jajcay, On the girth of voltage graph lifts. Eur. J. Combin. 32, 554–562 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Y.-Q. Feng, K. Kutnar, D. Marušič, D.-W. Yang, On cubic symmetric non-Cayley graphs with solvable automorphism groups, manuscript. arXiv: math/1609703
  12. 12.
    Y.-Q. Feng, C.H. Li, J.-X. Zhou, Symmetric cubic graphs with solvable automorphism groups. Eur. J. Combin. 45, 1–11 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Frelih, K. Kutnar, Classification of symmetric cubic tetracirculants and pentacirculants. Eur. J. Combin. 34, 169–194 (2013)CrossRefGoogle Scholar
  14. 14.
    G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 6th edn. (Oxford University Press, Oxford, 2008)MATHGoogle Scholar
  15. 15.
    M. Hladnik, Schur norms of bicirculant matrices. Lin. Alg. Appl. 286, 261–272 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Hladnik, D. Marušič, T. Pisanski, Cyclic Haar graphs. Discrete Math. 244, 137–153 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    W. Jin, W. Liu, A classification of nonabelian simple \(3\)-BCI-groups. Eur. J. Combin. 31, 1257–1264 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    H. Koike, I. Kovács, Isomorphic tetravalent cyclic Haar graphs. Ars Math. Contemp. 7, 215–235 (2014)MathSciNetMATHGoogle Scholar
  19. 19.
    H. Koike, I. Kovács, T. Pisanski, The number of cyclic configurations of type \((v_3)\) and the isomorphism problem. J. Combin. Des. 22(5), 216–229 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    I. Kovács, K. Kutnar, D. Marušič, Classification of edge-transitive rose window graphs. J. Graph Theory 65, 216–231 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    I. Kovács, A. Malnič, D. Marušič, Š. Miklavič, One-matchng bi-Cayley graphs over abelian groups. Eur. J. Combin. 30, 602–616 (2009)CrossRefGoogle Scholar
  22. 22.
    K. Kutnar, P. Petecki, On automorphisms and structural properties of double generalized Petersen graphs. Discrete Math. 339, 2861–2870 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Z.P. Lu, On the automorphism groups of bi-Cayley graphs. Acta Sci. Nat. Univ. Peking 39(1), 1–5 (2003)MATHGoogle Scholar
  24. 24.
    Z.P. Lu, C.Q. Wang, M.Y. Xu, Semisymmetric cubic graphs constructed from bi-Cayley graphs of \(A_n\). Ars Combin. 80, 177–187 (2006)MathSciNetMATHGoogle Scholar
  25. 25.
    T. Pisanski, A classification of cubic bicirculants. Discrete Math. 307, 567–578 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    W.R. Scott, Group Theory (Prentice-Hall, Upper Saddle River, 1964)MATHGoogle Scholar
  27. 27.
    A.I. Weiss, An infinite graph of girth \(12\). Trans. Amer. Math. Soc. 283, 575–588 (1984)MathSciNetMATHGoogle Scholar
  28. 28.
    S. Wilson, Rose window graphs. Ars Math. Contemp. 1, 7–19 (2008)MathSciNetMATHGoogle Scholar
  29. 29.
    J.X. Zhou, Y.Q. Feng, Cubic vertex-transitive non-Cayley graphs of order \(8p\). Electron. J. Combin. 19, 53 (2012)MathSciNetMATHGoogle Scholar
  30. 30.
    J.X. Zhou, Y.Q. Feng, Cubic bi-Cayley graphs over abelian groups. Eur. J. Combin. 36, 679–693 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marston D. E. Conder
    • 1
  • István Estélyi
    • 2
    • 3
    • 4
  • Tomaž Pisanski
    • 3
    • 5
  1. 1.Mathematics DepartmentUniversity of AucklandAucklandNew Zealand
  2. 2.FMFUniversity of LjubljanaLjubljanaSlovenia
  3. 3.IAMUniversity of PrimorskaKoperSlovenia
  4. 4.NTISUniversity of West BohemiaPlzeň 3Czech Republic
  5. 5.FAMNITUniversity of PrimorskaKoperSlovenia

Personalised recommendations