On Symmetries of Projections and Sections of Convex Bodies

  • Dmitry Ryabogin
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 234)


In this paper we discuss several questions of unique determination of convex (or star-shaped) bodies with projections (sections) satisfying a certain symmetry property.


Sections and projections of convex bodies 


  1. 1.
    S. Nakajima, Eine Kennzeichnung homothetischer Eiflächen. Tohoku Math. J. 35, 285–286 (1932)zbMATHGoogle Scholar
  2. 2.
    W. Süss, Zusammensetzung von Eikörpen und homothetische Eiflächen. Tohoku Math. J. 35, 47–50 (1932)zbMATHGoogle Scholar
  3. 3.
    R.J. Gardner, Geometric Tomography, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 58 (Cambridge University Press, Cambridge, 2006)Google Scholar
  4. 4.
    R. Schneider, Convex bodies with congruent sections. Bull. Lond. Math. Soc. 312, 52–54 (1980)MathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications, vol. 44 (Cambridge University Press, Cambridge, 1993)Google Scholar
  6. 6.
    A.D. Alexandrov, On the theory of mixed volumes of convex bodies. II. New inequalities between mixed volumes and their applications. Mat. Sbornik 2, 1205–1238 (1937). (In Russian)Google Scholar
  7. 7.
    D. Ryabogin, On a Lemma of Nakajima and Süss. AMM 122(9), 890–892 (2015)MathSciNetzbMATHGoogle Scholar
  8. 8.
    H. Hadwiger, Seitenrisse konvexer Körper und Homothetie. Elem. Math. 18, 97–8 (1963)MathSciNetzbMATHGoogle Scholar
  9. 9.
    M.A. Alfonseca, M. Cordier, D. Ryabogin, On bodies with congruent projections. Isr. J. Math. 215(2), 765–799 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Helgason, Radon Transform, 2nd edn. (Birkhäuser, 1999)Google Scholar
  11. 11.
    D. Ryabogin, On the continual Rubik’s cube. Adv. Math. 231, 3429–3444 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    K.J. Falconer, Applications of a result on spherical integration to the theory of convex sets. Am. Math. Mon. 90, 690–693 (1983)MathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Bonnesen, W. Fenchel, Theory of Convex Bodies, Moscow, Idaho, 1987Google Scholar
  14. 14.
    V.P. Golubyatnikov, Uniqueness questions in reconstruction of multidimensional objects from tomography type projection data, Inverse and Ill-posed problems series, Utrecht-Boston-Koln-Tokyo, 2000Google Scholar
  15. 15.
    S. Myroshnychenko, D. Ryabogin, On Polytopes with Congruent Projections, PreprintGoogle Scholar
  16. 16.
    S. Myroshnychenko, On a functional equation related to hedgehogs with congruent projections. JMAA 445(2), 1492–1504 (2017)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Y. Martinez-Maure, Hedgehogs, Banff’s lecture 2014, personal communicationGoogle Scholar
  18. 18.
    L. Montejano, Two applications of topology to convex geometry. Proc. Steklov Inst. Math. 247, 182–185 (2004)MathSciNetzbMATHGoogle Scholar
  19. 19.
    L. Montejano, Recognizing sets by means of some of their sections. Manuscripta Math. 76, 227–239 (1992)MathSciNetCrossRefGoogle Scholar
  20. 20.
    C.M. Petty, J.R. McKinney, Convex bodies with circumscribing boxes of constant volume. Portugal Math. 44, 447–455 (1987)MathSciNetzbMATHGoogle Scholar
  21. 21.
    A. Pelczyński, On some problems of Banach. Russ. Math. Surv. 28(6), 67–75 (1973). (In Russain)CrossRefGoogle Scholar
  22. 22.
    M. Gromov, On one geometric hypothesis of Banach. Izv. AN SSSR, 31(5), 1105–1114 (1967) (In Russian)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsKent State UniversityKentUSA

Personalised recommendations