Monge Points, Euler Lines, and Feuerbach Spheres in Minkowski Spaces

  • Undine Leopold
  • Horst Martini
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 234)


It is surprising, but an established fact that the field of elementary geometry referring to normed spaces (= Minkowski spaces) is not a systematically developed discipline. There are many natural notions and problems of elementary and classical geometry that were never investigated in this more general framework, although their Euclidean subcases are well known and this extended viewpoint is promising. An example is the geometry of simplices in non-Euclidean normed spaces; not many papers in this direction exist. Inspired by this lack of natural results on Minkowskian simplices, we present a collection of new results as non-Euclidean generalizations of well-known fundamental properties of Euclidean simplices. These results refer to Minkowskian analogues of notions like Euler line, Monge point, and Feuerbach sphere of a simplex in a normed space. In addition, we derive some related results on polygons (instead of triangles) in normed planes.


Birkhoff orthogonality Vertex centroid Circumsphere Euler line Feuerbach sphere Isosceles orthogonality Mannheim’s theorem Minkowskian simplex Monge point Normality Normed space 

2010 Mathematics Subject Classification

46B20 51M05 51M20 52A10 52A20 52A21 52B11 



The authors are grateful to Emil Molnár for several hints and remarks which helped to improve the presentation in the final version of this paper.


  1. 1.
    J. Alonso, C. Benítez, Orthogonality in normed linear spaces: a survey. I. Main properties. Extracta Math. 3(1), 1–15 (1988)MathSciNetGoogle Scholar
  2. 2.
    J. Alonso, C. Benítez, Orthogonality in normed linear spaces: a survey. II. Relations between main orthogonalities. Extracta Math. 4(3), 121–131 (1989)MathSciNetGoogle Scholar
  3. 3.
    J. Alonso, H. Martini, M. Spirova, Minimal enclosing discs, circumcircles, and circumcenters in normed planes (Part I). Comput. Geom. 45(5–6), 258–274 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    J. Alonso, H. Martini, M. Spirova, Minimal enclosing discs, circumcircles, and circumcenters in normed planes (Part II). Comput. Geom. 45(7), 350–369 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    J. Alonso, H. Martini, S. Wu, On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces. Aequationes Math. 83(1–2), 153–189 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    C. Alsina, M.S. Tomás, Orthocenters in real normed spaces and the Euler line. Aequationes Math. 67(1–2), 180–187 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    N. Altshiller-Court, Modern Pure Solid Geometry, 2nd edn. (Chelsea Publishing Co., New York, 1964)zbMATHGoogle Scholar
  8. 8.
    E. Asplund, B. Grünbaum, On the geometry of Minkowski planes. Enseignement Math. (2), 6, 299–306 (1961), 1960Google Scholar
  9. 9.
    G. Averkov, On the geometry of simplices in Minkowski spaces. Stud. Univ. Žilina Math. Ser. 16(1), 1–14 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    M. Buba-Brzozowa, Analogues of the nine-point circle for orthocentric \(n\)-simplexes. J. Geom. 81(1–2), 21–29 (2004)MathSciNetzbMATHGoogle Scholar
  11. 11.
    M. Buba-Brzozowa, The Monge point and the \(3(n+1)\) point sphere of an \(n\)-simplex. J. Geom. Graph. 9(1), 31–36 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    G.D. Chakerian, M.A. Ghandehari, The Fermat problem in Minkowski spaces. Geom. Dedicata 17(3), 227–238 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    S.N. Collings, Cyclic polygons and their Euler lines. Math. Gaz. 51, 108–114 (1967)zbMATHCrossRefGoogle Scholar
  14. 14.
    R.A. Crabbs, Gaspard Monge and the Monge point of the tetrahedron. Math. Mag. 76(3), 193–203 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    A.L. Edmonds, M. Hajja, H. Martini, Coincidences of simplex centers and related facial structures. Beiträge Algebra Geom. 46(2), 491–512 (2005)MathSciNetzbMATHGoogle Scholar
  16. 16.
    A.L. Edmonds, M. Hajja, H. Martini, Orthocentric simplices and their centers. Results Math. 47(3–4), 266–295 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    A.L. Edmonds, M. Hajja, H. Martini, Orthocentric simplices and biregularity. Results Math. 52(1–2), 41–50 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    E. Egerváry, On orthocentric simplexes. Acta Litt. Sci. Szeged 9, 218–226 (1940)MathSciNetzbMATHGoogle Scholar
  19. 19.
    E. Egerváry, On the Feuerbach-spheres of an orthocentric simplex. Acta Math. Acad. Sci. Hungar. 1, 5–16 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    R. Fritsch, "Höhenschnittpunkte" für \(n\)-Simplizes. Elem. Math. 31(1), 1–8 (1976)MathSciNetzbMATHGoogle Scholar
  21. 21.
    M.L. Gromov, Simplexes inscribed on a hypersurface. Mat. Zametki 5, 81–89 (1969)MathSciNetzbMATHGoogle Scholar
  22. 22.
    B. Grünbaum, Configurations of points and lines, vol. 103, Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 2009)Google Scholar
  23. 23.
    M. Hajja, H. Martini, Orthocentric simplices as the true generalizations of triangles. Math. Intelligencer 35(2), 16–28 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    G. Hajós, Über die Feuerbachschen Kugeln mehrdimensionaler orthozentrischer Simplexe. Acta Math. Acad. Sci. Hungar. 2, 191–196 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    B.H. Gómez, The Feuerbach circle and the other remarkable circles of the cyclic polygons. Elem. Math. 69(1), 1–10 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Á.G. Horváth, Hyperbolic plane geometry revisited. J. Geom. 106(2), 341–362 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Á.G. Horváth, On the hyperbolic triangle centers. Stud. Univ. Žilina Math. Ser. 27(1), 11–34 (2015)MathSciNetzbMATHGoogle Scholar
  28. 28.
    S. Iwata, The problem in closure in the \(n\)-dimensional space. Sci. Rep. Fac. Lib. Arts Ed. Gifu Univ. Natur. Sci. 3(1), 28–32 (1962)MathSciNetGoogle Scholar
  29. 29.
    M.S. Klamkin, K. Hanes, M.D. Meyerson, Problems and solutions: solutions: orthocenters uponOrthocenters: 10453. Amer. Math. Monthly 105(6), 563–565 (1998)MathSciNetCrossRefGoogle Scholar
  30. 30.
    A.O. Konnully, Orthocentre of a simplex. J. London Math. Soc. 39, 685–691 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    V.V. Makeev, The degree of a mapping in some problems of combinatorial geometry. Ukrain. Geom. Sb. 30, 62–66 (1987). iizbMATHGoogle Scholar
  32. 32.
    V.V. Makeev, Inscribed simplices of a convex body. Ukrain. Geom. Sb. 35, 47–49 (1992). 162zbMATHGoogle Scholar
  33. 33.
    S.R. Mandan. Altitudes of a simplex in \(n\)-space. J. Austral. Math. Soc. 2, 403–424 (1961/1962)Google Scholar
  34. 34.
    H. Martini, K.J. Swanepoel, The geometry of Minkowski spaces–a survey. II. Expo. Math. 22(2), 93–144 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    H. Martini, Recent results in elementary geometry. II, in Proceedings of the 2nd Gauss Symposium. Conference A: Mathematics and Theoretical Physics (Munich, 1993), Sympos. Gaussiana, (de Gruyter, Berlin, 1995), pp. 419–443Google Scholar
  36. 36.
    H. Martini, The three-circles theorem, Clifford configurations, and equilateral zonotopes. In: Proceedings of the 4th International Congress of Geometry (Thessaloniki, 1996) (Giachoudis-Giapoulis,Thessaloniki, 1997), pp 281–292Google Scholar
  37. 37.
    H. Martini, M. Spirova, The Feuerbach circle and orthocentricity in normed planes.Enseign. Math. (2), 53(3–4), 237–258 (2007)Google Scholar
  38. 38.
    H. Martini, M. Spirova, Clifford’s chain of theorems in strictly convex Minkowski planes. Publ. Math. Debrecen 72(3–4), 371–383 (2008)MathSciNetzbMATHGoogle Scholar
  39. 39.
    H. Martini, M. Spirova, Reflections in strictly convex Minkowski planes. Aequationes Math. 78(1–2), 71–85 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    H. Martini, M. Spirova, Regular tessellations in normed planes. Symmetry: Culture Sci. 1–2, 223–235 (2011)Google Scholar
  41. 41.
    H. Martini, M. Spirova, K. Strambach, Geometric algebra of strictly convex Minkowski planes. Aequationes Math. 88(1–2), 49–66 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    H. Martini, K.J. Swanepoel, G. Weiß, The geometry of Minkowski spaces–a survey. I. Expo. Math. 19(2), 97–142 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    H. Martini, S. Wu, On orthocentric systems in strictly convex normed planes. Extracta Math. 24(1), 31–45 (2009)Google Scholar
  44. 44.
    P. McMullen, E. Schulte, Abstract Regular Polytopes, vol. 92, Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 2002)Google Scholar
  45. 45.
    R. Mehmke, Ausdehnung einiger elementarer Sätze über das ebene Dreieck auf Räume von beliebig viel Dimensionen. Arch. Math. Phys. 70, 210–219 (1884)zbMATHGoogle Scholar
  46. 46.
    F. Molnár, Über die Eulersche Gerade und Feuerbachsche Kugel des \(n\)-dimensionalen Simplexes. Mat. Lapok 11, 68–74 (1960)MathSciNetzbMATHGoogle Scholar
  47. 47.
    H.W. Richmond, On extensions of the property of the orthocentre. Quart. J. 32, 251–256 (1900)zbMATHGoogle Scholar
  48. 48.
    T.R. Soto, W.P. Redondo, On orthocentric systems in Minkowski planes. Beitr. Algebra Geom. 56(1), 249–262 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    E. Snapper, An affine generalization of the Euler line. Amer. Math. Monthly 88(3), 196–198 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    M. Spirova, On Miquel’s theorem and inversions in normed planes. Monatsh. Math. 161(3), 335–345 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    S. Tabachnikov, E. Tsukerman, Remarks on the circumcenter of mass. Arnold Math. J. 1(2), 101–112 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    A.C. Thompson, Minkowski Geometry, vol. 63, Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1996)Google Scholar
  53. 53.
    I.M. Yaglom.Geometric transformations. II. (Translated from the Russian by Allen Shields) (Random House, New York; The L. W. Singer Co., Syracuse, N.Y., 1968)Google Scholar
  54. 54.
    P. Ziegenbein, Konfigurationen in der Kreisgeometrie. J. Reine Angew. Math. 183, 9–24 (1940)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fakultät für MathematikTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations