Pascal’s Triangle of Configurations

  • Gábor Gévay
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 234)


We introduce an infinite class of configurations which we call Desargues–Cayley–Danzer configurations. The term is motivated by the fact that they generalize the classical \((10_3)\) Desargues configuration and Danzer’s \((35_4)\) configuration; moreover, their construction goes back to Cayley. We show that these configurations can be arranged in a triangular array which resembles the classical Pascal triangle also in the sense that it can be recursively generated. As an interesting consequence, we show that all these configurations are connected to incidence theorems, like in the classical case of Desargues. We also show that these configurations can be represented not only by points and lines, but points and circles, too.


Combinatorial configuration Desargues–Cayley–Danzer configuration Geometric configuration Incidence sum Incidence theorem Point-circle configuration 



The author is grateful to the (anonymous) reviewers for their helpful comments. Special thanks go to Reviewer #1 for the insightful remarks and valuable suggestions that improved the exposition, results and proofs of this paper. This research is supported by the OTKA grant NN-114614.


  1. 1.
    V.E. Adler, Some incidence theorems and integrable discrete equations. Discrete Comput. Geom. 36, 489–498 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Boben, G. Gévay, T. Pisanski, Danzer’s configuration revisited. Adv. Geom. 15, 393–408 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Conway, A. Ryba, The Pascal mysticum demystified. Math. Intelligencer 34, 4–8 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Conway, A. Ryba, Extending the Pascal mysticum. Math. Intelligencer 35, 44–51 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    H.S.M. Coxeter, Self-dual configurations and regular graphs. Bull. Amer. Math. Soc. 56 (1950), 413–455. Reprinted in: H.S.M. Coxeter, Twelve Geometric Essays, Southern Illinois University Press, Carbondale, 1968, pp. 106–149Google Scholar
  6. 6.
    H.S.M. Coxeter, Projective Geometry (University of Toronto Press, Toronto, 1974)CrossRefGoogle Scholar
  7. 7.
    I. Dolgachev, Abstract configurations in algebraic geometry, in Proceedings Fano Conference, Torino, 2002 ed. by A. Collino, A. Conte, M. Marchisio (University of Torino, 2004), pp. 423–462Google Scholar
  8. 8.
    G. Gévay, Symmetric configurations and the different levels of their symmetry. Symmetry Cult. Sci. 20, 309–329 (2009)Google Scholar
  9. 9.
    G. Gévay, Constructions for large spatial point-line \((n_k)\) configurations. Ars Math. Contemp. 7, 175–199 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    G. Gévay, T. Pisanski, Kronecker covers, \(V\)-construction, unit-distance graphs and isometric point-circle configurations. Ars Math. Contemp. 7, 317–336 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    B. Grünbaum, Musings on an example of Danzer’s. European J. Combin. 29, 1910–1918 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Grünbaum, Configurations of Points and Lines, Graduate Texts in Mathematics, vol. 103 (American Mathematical Society, Providence, Rhode Island, 2009)Google Scholar
  13. 13.
    B. Grünbaum, J.F. Rigby, The real configuration \((21_4)\). J. London Math. Soc. 41, 336–346 (1990)MathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Hilbert, S. Cohn-Vossen, Anschauliche Geometrie, Springer, Berlin, 1932 (Szemléletes geometria, Gondolat, Budapest, Hungarian translation, 1982)Google Scholar
  15. 15.
    L. Klug, Az általános és négy különös Pascal-hatszög configuratiója (The Configuration of the General and Four Special Pascal Hexagons; in Hungarian), Ajtai K. Albert Könyvnyomdája, Kolozsvár, 1898. Reprinted in: L. Klug, Die Configuration Des Pascal’schen Sechseckes Im Allgemeinen Und in Vier Speciellen Fällen (German Edition), Nabu Press, 2010Google Scholar
  16. 16.
    F. Levi, Geometrische Konfigurationen (Hirzel, Leipzig, 1929)Google Scholar
  17. 17.
    T. Pisanski, B. Servatius, Configurations from a Graphical Viewpoint, Birkhäuser Advanced Texts Basler Lehrbücher Series (Birkhäuser Boston Inc., Boston, 2013)CrossRefGoogle Scholar
  18. 18.
    D.J.S. Robinson, A Course in the Theory of Groups (Springer-Verlag, New York, Berlin, Heidelberg, 1995)Google Scholar
  19. 19.
    B. Servatius, H. Servatius, The generalized Reye configuration. Ars Math. Contemp. 3, 21–27 (2010)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Á. Varga, personal communication (2015)Google Scholar
  21. 21.
    O. Veblen, J.W. Young, Projective Geometry, vol. 1 (Ginn and Company, Boston, 1910)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bolyai InstituteUniversity of SzegedSzegedHungary

Personalised recommendations