# A Brief Review of Real and Functional Analysis

Chapter

First Online:

- 1.5k Downloads

## Abstract

This chapter is meant to provide a very quick review of the real and functional analysis results that will be most frequently used afterwards. Missing proofs can be found in most classical works dealing with these questions.

## References

- 1.Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal.
**62**, 371–387 (1984)Google Scholar - 2.Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)Google Scholar
- 3.Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math.
**12**, 623–727 (1959)Google Scholar - 4.Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math.
**17**, 35–92 (1964)Google Scholar - 5.Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal.
**63**, 337–403 (1977)Google Scholar - 6.Ball, J.M.: A version of the fundamental theorem for Young measures. In: PDEs and Continuum Models of Phase Transitions (Nice, 1988). Lecture Notes in Physics, vol. 344, pp. 207–215. Springer, Berlin (1989)Google Scholar
- 7.Ball, J.M., Currie, J.C., Olver, P.J.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal.
**41**, 135–174 (1981)Google Scholar - 8.Bourbaki, N.: Espaces vectoriels topologiques. Hermann, Paris (1967)Google Scholar
- 9.Brezis, H.: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble)
**18**, 115–175 (1968)Google Scholar - 10.Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, vol. 5. Notas de Matemática, vol. 50. North-Holland Publishing Co., Amsterdam; American Elsevier Publishing Co., Inc., New York (1973)Google Scholar
- 11.Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)Google Scholar
- 12.Browder, F.: Problèmes non linéaires. Université de Montréal (1966)Google Scholar
- 13.Buttazzo, G., Giaquinta, M., Hildebrandt, S.: One-Dimensional Variational Problems, An Introduction. Oxford Lecture Series in Mathematics and Its Applications, vol. 15. Clarendon Press, Oxford (1998)Google Scholar
- 14.Caffarelli, L.A.: The obstacle problem revisited. J. Fourier Anal. Appl.
**4**, 383–402 (1988)Google Scholar - 15.Chazarain, J., Piriou, A.: Introduction à la théorie des équations aux dérivées partielles linéaires. Gauthier-Villars, Paris (1981)Google Scholar
- 16.Ciarlet, P.G.: Mathematical Elasticity. Vol. I. Three-dimensional Elasticity. Studies in Mathematics and Its Applications, vol. 20. North-Holland Publishing Co., Amsterdam (1988)Google Scholar

## Copyright information

© Springer International Publishing AG, part of Springer Nature 2018