Advertisement

Revisiting AES-GCM-SIV: Multi-user Security, Faster Key Derivation, and Better Bounds

  • Priyanka Bose
  • Viet Tung Hoang
  • Stefano Tessaro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10820)

Abstract

This paper revisits the multi-user (mu) security of symmetric encryption, from the perspective of delivering an analysis of the \(\mathsf {AES\text {-}GCM\text {-}SIV}\) AEAD scheme. Our end result shows that its mu security is comparable to that achieved in the single-user setting. In particular, even when instantiated with short keys (e.g., 128 bits), the security of \(\mathsf {AES\text {-}GCM\text {-}SIV}\) is not impacted by the collisions of two user keys, as long as each individual nonce is not re-used by too many users. Our bounds also improve existing analyses in the single-user setting, in particular when messages of variable lengths are encrypted. We also validate security against a general class of key-derivation methods, including one that halves the complexity of the final proposal.

As an intermediate step, we consider mu security in a setting where the data processed by every user is bounded, and where user keys are generated according to arbitrary, possibly correlated distributions. This viewpoint generalizes the currently adopted one in mu security, and can be used to analyze re-keying practices.

Keywords

Multi-user security \(\mathsf {AES\text {-}GCM\text {-}SIV}\) Authenticated encryption Concrete security 

Notes

Acknowledgments

We thank Mihir Bellare, Shay Gueron, Yehuda Lindell, and anonymous CRYPTO reviewers for insightful feedback.

Priyanka Bose and Stefano Tessaro were supported by NSF grants CNS-1553758 (CAREER), CNS-1423566, CNS-1719146, CNS-1528178, and IIS-1528041, and by a Sloan Research Fellowship. Viet Tung Hoang was supported in part by NSF grant CICI-1738912 and the First Year Assistant Professor Award of Florida State University.

References

  1. 1.
    Abdalla, M., Bellare, M.: Increasing the lifetime of a key: a comparative analysis of the security of re-keying techniques. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 546–559. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44448-3_42CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and its multi-user security. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 566–595. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_22CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45539-6_18CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the cascade construction and its concrete security. In: 37th FOCS, pp. 514–523. IEEE Computer Society Press, October 1996Google Scholar
  5. 5.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press, October 1997Google Scholar
  6. 6.
    Bellare, M., Hoang, V.T.: Identity-based format-preserving encryption. In: CCS 2017, pp. 1515–1532 (2017)Google Scholar
  7. 7.
    Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseudorandom function based constructions, with applications to PRP to PRF conversion. Cryptology ePrint Archive, Report 1999/024 (1999). http://eprint.iacr.org/1999/024
  8. 8.
    Bellare, M., Krovetz, T., Rogaway, P.: Luby-rackoff backwards: increasing security by making block ciphers non-invertible. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054132CrossRefGoogle Scholar
  9. 9.
    Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption: AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 247–276. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_10CrossRefGoogle Scholar
  10. 10.
    Biham, E.: How to forge DES-encrypted messages in \(2^{28}\) steps. Technical Report CS0884, Technion - Israel Institute of Technology (1996)Google Scholar
  11. 11.
    Biham, E.: How to decrypt or even substitute DES-encrypted messages in \(2^{28}\) steps. Inf. Process. Lett. 84(3), 117–124 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: Multi-user security, faster key derivation, and better bounds. Cryptology ePrint Archive, Report 2018/136 (2018). https://eprint.iacr.org/2018/136
  13. 13.
    Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–350. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_19CrossRefGoogle Scholar
  14. 14.
    Dai, W., Hoang, V.T., Tessaro, S.: Information-theoretic indistinguishability via the chi-squared method. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 497–523. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_17CrossRefGoogle Scholar
  15. 15.
    Dworkin, M., Perlner, R.: Analysis of VAES3 (FF2). Cryptology ePrint Archive, Report 2015/306 (2015). http://eprint.iacr.org/2015/306
  16. 16.
    Gilboa, S., Gueron, S.: Distinguishing a truncated random permutation from a random function. Cryptology ePrint Archive, Report 2015/773 (2015). http://eprint.iacr.org/2015/773
  17. 17.
    Goldwasser, S., Bellare, M.: Lecture Notes on Cryptography. Summer Course “Cryptography and Computer Security”. MIT (1999)Google Scholar
  18. 18.
    Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: Specification and analysis. Cryptology ePrint Archive, Report 2017/168 (2017). http://eprint.iacr.org/2017/168
  19. 19.
    Gueron, S., Lindell, Y.: GCM-SIV: Full nonce misuse-resistant authenticated encryption at under one cycle per byte. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 109–119. ACM Press, October 2015Google Scholar
  20. 20.
    Gueron, S., Lindell, Y.: Better bounds for block cipher modes of operation via nonce-based key derivation. In: CCS 2017, pp. 1019–1036 (2017)Google Scholar
  21. 21.
    Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_1CrossRefGoogle Scholar
  22. 22.
    Hoang, V.T., Tessaro, S.: The multi-user security of double encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 381–411. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_13CrossRefGoogle Scholar
  23. 23.
    Iwata, T.: New blockcipher modes of operation with beyond the birthday bound security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer, Heidelberg (2006).  https://doi.org/10.1007/11799313_20CrossRefGoogle Scholar
  24. 24.
    Iwata, T., Seurin, Y.: Reconsidering the security bound of AES-GCM-SIV. IACR Trans. Symm. Cryptol. 2017(4), 240–267 (2017)Google Scholar
  25. 25.
    Lucks, S.: The sum of PRPs is a secure PRF. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 470–484. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45539-6_34CrossRefGoogle Scholar
  26. 26.
    Luykx, A., Mennink, B., Paterson, K.G.: Analyzing multi-key security degradation. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 575–605. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70697-9_20CrossRefGoogle Scholar
  27. 27.
    Maurer, U.: Indistinguishability of Random Systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_8CrossRefGoogle Scholar
  28. 28.
    McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30556-9_27CrossRefGoogle Scholar
  29. 29.
    Mouha, N., Luykx, A.: Multi-key security: the even-mansour construction revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 209–223. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_10CrossRefGoogle Scholar
  30. 30.
    Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 257–274. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_15CrossRefGoogle Scholar
  31. 31.
    Patarin, J.: A proof of security in \({O}(2^n)\) for the xor of two random permutations. In: Safavi-Naini, R. (ed.) ICITS 08. LNCS, vol. 5155, pp. 232–248. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85093-9_22Google Scholar
  32. 32.
    Patarin, J.: The “coefficients H” technique (invited talk). In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04159-4_21Google Scholar
  33. 33.
    Patarin, J.: Introduction to mirror theory: Analysis of systems of linear equalities and linear non equalities for cryptography. Cryptology ePrint Archive, Report 2010/287 (2010). http://eprint.iacr.org/2010/287
  34. 34.
    Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_23CrossRefGoogle Scholar
  35. 35.
    Tessaro, S.: Optimally secure block ciphers from ideal primitives. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 437–462. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48800-3_18CrossRefGoogle Scholar
  36. 36.
    Vance, J.: VAES3 scheme for FFX: An addendum to “The FFX mode of operation for Format Preserving Encryption”. Submission to NIST, May 2011Google Scholar
  37. 37.
    Vance, J., Bellare, M.: Delegatable Feistel-based Format Preserving Encryption mode. Submission to NIST, November 2015Google Scholar
  38. 38.
    Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22, 265–279 (1981)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Priyanka Bose
    • 1
  • Viet Tung Hoang
    • 2
  • Stefano Tessaro
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Computer ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations