Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery

  • Meicheng Liu
  • Jingchun Yang
  • Wenhao Wang
  • Dongdai Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10821)

Abstract

In this paper, we describe a new variant of cube attacks called correlation cube attack. The new attack recovers the secret key of a cryptosystem by exploiting conditional correlation properties between the superpoly of a cube and a specific set of low-degree polynomials that we call a basis, which satisfies that the superpoly is a zero constant when all the polynomials in the basis are zeros. We present a detailed procedure of correlation cube attack for the general case, including how to find a basis of the superpoly of a given cube. One of the most significant advantages of this new analysis technique over other variants of cube attacks is that it converts from a weak-key distinguisher to a key recovery attack.

As an illustration, we apply the attack to round-reduced variants of the stream cipher Trivium. Based on the tool of numeric mapping introduced by Liu at CRYPTO 2017, we develop a specific technique to efficiently find a basis of the superpoly of a given cube as well as a large set of potentially good cubes used in the attack on Trivium variants, and further set up deterministic or probabilistic equations on the key bits according to the conditional correlation properties between the superpolys of the cubes and their bases. For a variant when the number of initialization rounds is reduced from 1152 to 805, we can recover about 7-bit key information on average with time complexity \(2^{44}\), using \(2^{45}\) keystream bits and preprocessing time \(2^{51}\). For a variant of Trivium reduced to 835 rounds, we can recover about 5-bit key information on average with the same complexity. All the attacks are practical and fully verified by experiments. To the best of our knowledge, they are thus far the best known key recovery attacks for these variants of Trivium, and this is the first time that a weak-key distinguisher on Trivium stream cipher can be converted to a key recovery attack.

Keywords

Cryptanalysis Cube attack Numeric mapping Stream cipher Trivium 

Notes

Acknowledgments

We are grateful to the anonymous reviewers for their valuable comments.

References

  1. 1.
    Aumasson, J., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA implementations of high-dimensional cube testers on the stream cipher Grain-128. IACR Cryptology ePrint Archive 2009:218 (2009)Google Scholar
  2. 2.
    Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery attacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, January 2011. http://keccak.noekeon.org, Version 3.0
  4. 4.
    Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier, P., Sirdey, R.: Stream ciphers: a practical solution for efficient homomorphic-ciphertext compression. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 313–333. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  5. 5.
    Chakraborti, A., Chattopadhyay, A., Hassan, M., Nandi, M.: TriviA: a fast and secure authenticated encryption scheme. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 330–353. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  6. 6.
    Chakraborti, A., Nandi, M.: TriviA-ck-v2. CAESAR Submission (2015). http://competitions.cr.yp.to/round2/triviackv2.pdf
  7. 7.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04138-9_20CrossRefGoogle Scholar
  8. 8.
    De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68351-3_18CrossRefGoogle Scholar
  9. 9.
    Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An experimentally verified attack on Full Grain-128 using dedicated reconfigurable hardware. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 327–343. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and cube-attack-like cryptanalysis on the Round-Reduced Keccak Sponge Function. In: Oswald and Fischlin [26], pp. 733–761Google Scholar
  11. 11.
    Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Englund, H., Johansson, T., Sönmez Turan, M.: A framework for chosen IV statistical analysis of stream ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 268–281. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Fischer, S., Khazaei, S., Meier, W.: Chosen IV statistical analysis for key recovery attacks on stream ciphers. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 236–245. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of Trivium using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 502–517. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: grain-128. In: 2006 IEEE International Symposium on Information Theory, pp. 1614–1618. IEEE (2006)Google Scholar
  17. 17.
    Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 179–190. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on reduced-round Keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 259–288. Springer, Cham (2017)CrossRefGoogle Scholar
  19. 19.
    Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 130–145. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis of Trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 200–212. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Lai, X.: Higher order derivatives and differential cryptanalysis. In: Proceedings Symposium in Communications, Coding Cryptography, pp. 227–233. Kluwer Academic Publishers (1994)Google Scholar
  22. 22.
    Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 227–249. Springer, Cham (2017)CrossRefGoogle Scholar
  23. 23.
    Liu, M., Lin, D., Wang, W.: Searching cubes for testing Boolean functions and its application to Trivium. In: IEEE International Symposium on Information Theory, ISIT 2015, Hong Kong, China, 14–19 June 2015, pp. 496–500. IEEE (2015)Google Scholar
  24. 24.
    Maximov, A., Biryukov, A.: Two trivial attacks on Trivium. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 36–55. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers. J. Cryptol. 1(3), 159–176 (1989)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Oswald, E., Fischlin, M. (eds.): EUROCRYPT 2015. LNCS, vol. 9056. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5MATHGoogle Scholar
  27. 27.
    Saarinen, M.O.: Chosen-IV statistical attacks on estream ciphers. In: Malek, M., Fernández-Medina, E., Hernando, J. (eds.) SECRYPT 2006, Proceedings of the International Conference on Security and Cryptography, Setúbal, Portugal, 7–10 August 2006, SECRYPT is part of ICETE - The International Joint Conference on e-Business and Telecommunications, pp. 260–266. INSTICC Press (2006)Google Scholar
  28. 28.
    Stankovski, P.: Greedy distinguishers and nonrandomness detectors. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 210–226. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Todo, Y.: Structural evaluation by generalized integral property. In: Oswald and Fischlin [26], pp. 287–314Google Scholar
  30. 30.
    Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 250–279. Springer, Cham (2017)CrossRefGoogle Scholar
  31. 31.
    Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  32. 32.
    Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an algebraic IV differential attack. IACR Cryptology ePrint Archive, 2007:413 (2007)Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Meicheng Liu
    • 1
  • Jingchun Yang
    • 1
  • Wenhao Wang
    • 1
  • Dongdai Lin
    • 1
  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations