Advertisement

The Complexity of Multiparty PSM Protocols and Related Models

  • Amos Beimel
  • Eyal Kushilevitz
  • Pnina Nissim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10821)

Abstract

We study the efficiency of computing arbitrary k-argument functions in the Private Simultaneous Messages (PSM) model of [10, 14]. This question was recently studied by Beimel et al. [6], in the two-party case (\(k=2\)). We tackle this question in the general case of PSM protocols for \(k\ge 2\) parties. Our motivation is two-fold: On one hand, there are various applications (old and new) of PSM protocols for constructing other cryptographic primitives, where obtaining more efficient PSM protocols imply more efficient primitives. On the other hand, improved PSM protocols are an interesting goal on its own. In particular, we pay a careful attention to the case of small number of parties (e.g., \(k=3,4,5\)), which may be especially interesting in practice, and optimize our protocols for those cases.

Our new upper bounds include a k-party PSM protocol, for any \(k>2\) and any function \(f:[N]^k\rightarrow \{0,1\}\), of complexity O(poly\((k)\cdot N^{k/2})\) (compared to the previous upper bound of O(poly\((k)\cdot N^{k-1})\)), and even better bounds for small values of k; e.g., an O(N) PSM protocol for the case \(k=3\). We also handle the more involved case where different parties have inputs of different sizes, which is useful both in practice and for applications.

As applications, we obtain more efficient Non-Interactive secure Multi-Party (NIMPC) protocols (a variant of PSM, where some of the parties may collude with the referee [5]), improved ad-hoc PSM protocols (another variant of PSM, where the subset of participating parties is not known in advance [4, 7]), secret-sharing schemes for uniform access structures with smaller share size than previously known, and better homogeneous distribution designs [4] (a primitive with many cryptographic applications on its own).

References

  1. 1.
    Applebaum, B., Raykov, P.: From private simultaneous messages to zero-information Arthur-Merlin protocols and back. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 65–82. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_3CrossRefGoogle Scholar
  2. 2.
    Beimel, A., Farràs, O., Mintz, Y., Peter, N.: Linear secret-sharing schemes for forbidden graph access structures. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 394–423. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70503-3_13CrossRefGoogle Scholar
  3. 3.
    Beimel, A., Farràs, O., Peter, N.: Secret sharing schemes for dense forbidden graphs. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 509–528. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44618-9_27Google Scholar
  4. 4.
    Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E.: Distribution design. In: ITCS 2016, pp. 81–92 (2016)Google Scholar
  5. 5.
    Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_22CrossRefGoogle Scholar
  6. 6.
    Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic complexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 317–342. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_14CrossRefGoogle Scholar
  7. 7.
    Beimel, A., Ishai, Y., Kushilevitz, E.: Ad hoc PSM protocols: secure computation without coordination. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 580–608. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_20CrossRefGoogle Scholar
  8. 8.
    Benhamouda, F., Krawczyk, H., Rabin, T.: Robust non-interactive multiparty computation against constant-size collusion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 391–419. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_13CrossRefGoogle Scholar
  9. 9.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. J. ACM 45, 965–981 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: 26th STOC, pp. 554–563 (1994)Google Scholar
  11. 11.
    Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional disclosure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_24CrossRefGoogle Scholar
  12. 12.
    Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. JCSS 60(3), 592–629 (2000)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure computation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 359–378. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_18CrossRefGoogle Scholar
  14. 14.
    Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: 5th Israel Symposium on Theory of Computing and Systems, pp. 174–183 (1997)Google Scholar
  15. 15.
    Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_31CrossRefGoogle Scholar
  16. 16.
    Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via non-linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 758–790. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_25CrossRefGoogle Scholar
  17. 17.
    Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponential barrier for general secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 567–596. Springer, Cham (2018)Google Scholar
  18. 18.
    Sun, H.-M., Shieh, S.-P.: Secret sharing in graph-based prohibited structures. In: INFOCOM 1997, pp. 718–724 (1997)Google Scholar
  19. 19.
    Yoshida, M., Obana, S.: On the (in)efficiency of non-interactive secure multiparty computation. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 185–193. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30840-1_12CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceBen Gurion UniversityBeer ShevaIsrael
  2. 2.Department of Computer ScienceTechnionHaifaIsrael

Personalised recommendations