Skip to main content

Electronic Sensors and Instruments for Coastal Ocean Observing

  • Chapter
  • First Online:
  • 709 Accesses

Abstract

Electromechanical, electro-optical, opto-chemical, and electrochemical sensors are now available that allow continuous real-time monitoring of a wide range of environmental parameters and process rates. These sensors are integrated into electronic instruments capable of directly or remotely capturing these properties or rate processes in quantitative terms as analog or digital data. This chapter describes in detail the wide range of commercially available sensors and instruments with examples for the most commonly measured physical, chemical, and biological variables in the marine environmental field. Principles of operation and limitations of available sensors are also described.

The original version of this chapter was revised. A correction to this chapter can be found at https://doi.org/10.1007/978-3-319-78352-9_9

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Atwood DK, Kinard WF, Barcelona MJ, Johnson CE. Comparison of Polarographic electrode and Winkler titration determinations of dissolved oxygen in oceanographic samples. Deep-Sea Res. 1977;24(3):311–3.

    Article  Google Scholar 

  • Atwood DK, Burton FJ, Corredor JE, Harvey G, Mata-Jimenez A, Vasquez-Botello A, Wade B. Results of the CARIPOL petroleum pollution monitoring project in the Wider Caribbean. Mar Poll Bull. 1987;18:540–8.

    Article  Google Scholar 

  • Atwood DK, Burton FJ, Corredor JE, Harvey G, Mata-Jimenez A, Vasquez-Botello A, Wade B. Petroleum pollution in the Caribbean. Oceanus. 1987/1988;30:25–32.

    Google Scholar 

  • Baringer MO, Larsen JC. Sixteen years of Florida current transport at 27°N. Geophys Res Lett. 2001;28(16):3179–82.

    Article  Google Scholar 

  • Barrick DE, Evans MW, Weber BL. Ocean surface currents mapped by radar. Science. 1977;198:138–44.

    Article  Google Scholar 

  • Barton A, Hales B, Waldbusser GG, Langdon C, Feely RA. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. Limnol Oceanogr. 2012;57(3):698–710.

    Article  Google Scholar 

  • Blondeau-Pattissier D, et al. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog Oceanogr. 2014;123:123–44.

    Article  Google Scholar 

  • Branham CW, Murphy DJ, Walsh ID. Reliably measuring pH in the ocean. Int Ocean Systems 2017; 21(5) http://www.intoceansys.co.uk/articles-detail.php?iss=0000000062&acl=0000000569. Accessed 4/28/2018.

  • Brown SW, Flora SJ, Feinholz ME, Yarbrough MA, Houlihan T, Peters D, Kim YS, Mueller J, Johnson BC, Clark DK. The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration. Proc SPIE Optics Photonics Sensors Syst Next Generation Satellites XI. 2007;6744:67441M.

    Google Scholar 

  • Bureau International des Poids et Mesures. The international system of units (SI). 8th ed. Organisation intergouvernementale de la convention du Mètre Paris: 2006. ISBN 92-822-2213-6.

    Google Scholar 

  • Buskey EJ, Hyatt CJ. Use of the FlowCAM for semi-automated recognition and enumeration of red tide cells (Karenia brevis) in natural plankton samples. Harmful Algae. 2006;5(6):685–92.

    Article  Google Scholar 

  • Caldeira K. What corals are dying to tell us about CO2 and ocean acidification. Oceanography. 2007;20:188–95.

    Article  Google Scholar 

  • Caldeira K, Wickett ME. Anthropogenic carbon and ocean pH. Nature. 2003;425:365.

    Article  Google Scholar 

  • Chatterjee A, Gierach MM, Sutton AJ, Feely RA, Crisp D, Eldering A, Gunson MR, O’Dell CW, Stephens BB, Schimel DS. Influence of El Niño on CO2 over the tropical Pacific Ocean: findings from NASA’s OCO-2 mission. Science. 2017;358(6360):190.

    Article  Google Scholar 

  • Clark DK, et al. MOBY, a radiometric buoy for performance monitoring and vicarious calibration of Satellite Ocean color sensors: measurement and data analysis protocols. In: Muller JL, Fargion GS, editors. Ocean optics protocols for satellite ocean color sensor validation, revision 3. Greenbelt: National Aeronautics and Space Administration, Goddard Space Flight Center; 2002. Volume 2 NASA/TMm2002–210004/Rev3-Vol2.

    Google Scholar 

  • Clayton TD, Byrne RH. Spectrophotometric seawater pH measurements: Total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res I. 1993;40:2115–29.

    Article  Google Scholar 

  • Coppola L, Salvetat F, Delauney L, Machoczek D, Karstensen J, Sparnocchia S, Thierry V, Hydes D, Haller M, Nair R, Lefevre D. White paper on dissolved oxygen measurements: scientific needs and sensors accuracy. JERICO report (EU FP7 project, grant agreement no: 262584). 2013.; http://www.jerico-ri.eu/download/filebase/White%20paper%20DO_final%20-copyright.pdf. Accessed 4/28/2018.

  • Corredor JE. Development and propagation of internal waves in the Mona Passage. Sea Tech. 2008;49(10):48–50.

    Google Scholar 

  • Corredor JE, Morell JM, Del Castillo C. Persistence of spilled oil in a tropical intertidal environment. Mar Poll Bull. 1990;21:385–8.

    Article  Google Scholar 

  • Corredor JE, Morell JM, López JM, Capella JE, Armstrong RA. Cyclonic eddy entrains Orinoco River plume. EOS Trans Am Geophys Union. 2004;85(20):197, 201–2.

    Article  Google Scholar 

  • Corredor JE, Amador A, Canals M, Rivera S, Capella JE, Morell JM, Glenn S, Handel E, Rivera E, Roarty H. Optimizing and validating high frequency radar surface current measurements in the mona passage. Mar Technol Soc J. 2011;45(3):49–58.

    Article  Google Scholar 

  • Cyronak, Tyler, Karl Schulz and Paul Jokiel. The Omega myth: what really drives lower calcification rates in an acidifying ocean ICES J Mar Sci 2015 DOI: https://doi.org/10.1093/icesjms/fsv091. 5 p.

    Article  Google Scholar 

  • DeGrandpre MD, Hammar TR, Smith SP, Sayles FL. In situ measurements of seawater pCO2. Limnol Oceanogr. 1995;40:969–75. https://doi.org/10.4319/lo.1995.40.5.0969.

    Article  Google Scholar 

  • Del Castillo CE. Remote sensing of organic matter in coastal waters. In: Miller RL, Del Castillo CE, McKee BA, editors. Remote sensing of coastal aquatic environments. Dordrecht: Springer; 2005. p. 157–79.

    Chapter  Google Scholar 

  • Del Castillo CE, Coble PG, Morell JM, López JM, Corredor JE. Analysis of optical properties of the Orinoco River by absorption and fluorescence spectroscopy: changes in optical properties of the dissolved organic matter. Mar Chem. 1999;66:35–51.

    Google Scholar 

  • Dickson AG. The carbon dioxide system in seawater: equilibrium chemistry and measurements. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J-P, editors. Guide to best practices for ocean acidification research and data reporting, vol. 260. Luxembourg: Publications Office of the European Union; 2010.

    Google Scholar 

  • Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci. 2009;106(30):12235–40.

    Article  Google Scholar 

  • Dubelaar GBJ, Jonker RR. Flow cytometry as a tool for the study of phytoplankton. Sci Mar. 2000;64(2):135–56.

    Article  Google Scholar 

  • Dubelaar GBJ, Gerritzen PL, Beeker AER, Jonker RR, Tangen K. Design and first results of CytoBuoy: a wireless flow cytometer for in situ analysis of marine and fresh waters. Cytometry. 1999;37:247–54.

    Article  Google Scholar 

  • Dugene M, Thyssen M, Garcia N, Mayot N, Bernard G, Grégori G. Monitoring of a potential harmful algal species in the berre lagoon by ated in situ flow cytometry. In: Ceccaldi HJ, Hénocque Y, Koike Y, Komatsu T, Stora G, Tusseau-Vuillemin MH, editors. Marine productivity: ations and resilience of socio-ecosystems. Cham: Springer International Publishing; 2015. p. 117–27.

    Google Scholar 

  • Edwards AC, Hooda PS, Cook Y. Determination of nitrate in water containing dissolved organic carbon by ultraviolet spectroscopy. Int J Environ Anal Chem. 2001;80(1):49.

    Article  Google Scholar 

  • Eldering A, Chris WO, apos; Dell, Wennberg PO, Crisp D, Michael R, Gunson CV, Avis C, Braverman A, Castano R, Chang A, Chapsky L, Cheng C, Connor B, Dang L, Doran G, Fisher B, Frankenberg C, Fu D, Granat R, Hobbs J, Richard A, Lee M, Mandrake L, McDuffie J, Charles E, Miller VM, Natraj V, Denis O, apos, Brien GB, Osterman FO, Vivienne H, Payne HR, Pollock IP, Coleen M, Roehl RR, Schwandner F, Smyth M, Tang V, Taylor TE, Cathy TO, Wunch D, Yoshimizu J. The Orbiting Carbon Observatory- 2: first 18Â months of science data products. Atmos Meas Tech. 2017;10(2):549–63.

    Google Scholar 

  • Emery WJ, Wick GA, Schleussel P. Chapter 10. Skin and bulk sea surface temperatures: satellite measurements and corrections. In: Ikeda M, Dobson FW, editors. Oceanographic applications of remote sensing. Boca Raton: CRC Press; 1995. p. 145–65.

    Google Scholar 

  • Evans M, Liu J, Bacosa H, Rosenheim BE, Liua Z. Petroleum hydrocarbon persistence following the deepwater horizon oil spill as a function of shoreline energy. Mar Pollut Bull. 2017;115:47–56.

    Article  Google Scholar 

  • Feely RA, Sabine CL, Takahashi T, Wanninkhof R. Uptake and storage of carbon dioxide in the ocean: the global CO2 survey: reference materials for oceanic CO2 measurements. Oceanography. 2001;14(4):18–32.

    Article  Google Scholar 

  • Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B. Evidence for upwelling of corrosive “Acidified” water onto the continental shelf. Science. 2008;320(5882):1490–2.

    Article  Google Scholar 

  • Fielding S. The biological validation of ADCP acoustic backscatter through direct comparison with net samples and model predictions based on acoustic-scattering models. ICES J Mar Sci. 2004;61(2):184–200.

    Article  Google Scholar 

  • Grey SEC, DeGrandpre MD, Langdon C, Corredor JE. Short-term and seasonal pH, pCO2 and saturation state variability in a coral-reef ecosystem. Global Biogeochem Cycles. 2012;26:GB3012. https://doi.org/10.1029/2011GB004114.

    Article  Google Scholar 

  • Gurgel KW, Antonischki G, Essen HH, Schlick T. Wellen Radar (WERA): a new ground wave HF radar for remote sensing. Coast Eng. 1999;37:219–34.

    Google Scholar 

  • Hansell DA, Carlson CA, editors. Biogeochemistry of marine dissolved organic matter. 2nd ed. London: Academic; 2015. 693 pp.

    Google Scholar 

  • Holliday NP, Yelland MJ, Pascal R, Swail VR, Taylor PK, Griffiths CR, Kent E. Were extreme waves in the Rockall trough the largest ever recorded? Geophys Res Lett. 2006;33(5):L05613.

    Article  Google Scholar 

  • Holmes RM, et al. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci. 1999;56:1801–8.

    Article  Google Scholar 

  • Hu C, Montgomery ET, Schmitt RW, Müller-Karger FE. The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: observation from space and S-PALACE floats. Deep-Sea Res II Top Stud Oceanogr. 2004;51:1151–71. https://doi.org/10.1016/j.dsr2.2004.04.001.

    Article  Google Scholar 

  • Johnson KS, Coletti LJ. In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep Sea Res I. 2002;49:1291–305.

    Article  Google Scholar 

  • Johnson KS, Jannasch HW, Coletti LJ, Elrod VA, Martz TR, Takeshita Y, Carlson RJ, Connery JG. Deep-Sea DuraFET: a pressure tolerant pH sensor designed for global sensor networks. Anal Chem. 2016;88(6):3249–56. https://doi.org/10.1021/acs.analchem.5b04653.

    Article  Google Scholar 

  • Kirk JTO. Light and photosynthesis in aquatic ecosystems. London/New York: Cambridge University Press; 1994.

    Book  Google Scholar 

  • Lagerloef G. Satellite mission Monitors Ocean surface salinity. EOS Trans Am Geophys Union. 2012;93(2519):233–40.

    Article  Google Scholar 

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles. 2000;14:639–54.

    Article  Google Scholar 

  • Lewis EL. The practical salinity scale 1978 and the international equation of state of seawater 1980. IEEE J Ocean Eng. 1980;OE-5(1):3–8.

    Article  Google Scholar 

  • Liu Y, et al. Development of Chinese carbon dioxide satellite (TanSat). Vienna: EGU General Assembly; 2013. p. 157–89.

    Google Scholar 

  • MacIntyre G, Plache B, Lewis MR, Andrea J, Feener S, McLean SD, Johnson KS, Coletti LJ, Jannasch HW. ISUS/SUNA nitrate measurements in networked ocean observing systems. http://www.stccmop.org/files/ISUS-SUNA-Nitrate-Measurment-White-Paper.pdf. Accessed 9/11/2017; 2009.

  • Marsh HW. Underwater sound and instrumentation. In: Myers JJ, Holm CH, McAllister RF, editors. Handbook of ocean and underwater engineering. Copyright by North American Rockwell Corporation. New York: McGraw Hill; 1969. pp. 3–3 to 3–20.

    Google Scholar 

  • Martin KI, Walsh ID, Branham CW. Measuring nitrate in Puget sound using optical sensors. Mar Tech Oct. 2017;58:10–113.

    Google Scholar 

  • Martz TR, Carr JJ, French CR, DeGrandpre MD. A submersible autonomous sensor for spectrophotometric pH measurements of natural waters. Anal Chem. 2003;75(8):1844–50. https://doi.org/10.1021/ac020568l.

    Article  Google Scholar 

  • Martz TR, Connery JG, Johnson KS. Testing the Honeywell Durafet® for seawater pH applications. Limnol Oceanogr Methods. 2010;8:172–84.

    Article  Google Scholar 

  • McDougall TJ, Jackett DR, Millero FJ, Pawlowicz R, Barker PM. A global algorithm for estimating absolute salinity. Ocean Sci. 2012;8:1123–34. https://doi.org/10.5194/os-8-1123-2012. www.ocean-sci.net/8/1123/2012/.

    Article  Google Scholar 

  • Millero FJ. Chemical oceanography. 4th ed. Boca Raton: CRC Press Taylor & Francis Group; 2013. 571 p. ISBN 9788-1-4665-1249-8.

    Google Scholar 

  • Millero FJ, Pierrot D, Lea K, Wanninkhof R, Feely R, Sabine CL, Key RM, Takahashi T. Dissociation constants for carbonic acid determined from field measurements. Deep Sea Res I. 2002;49:1705–23.

    Article  Google Scholar 

  • Mills A. Optical oxygen sensors utilizing the luminescence of platinum metals complexes. Platinum Metals Rev. 1997;41(3):115–27.

    Google Scholar 

  • Müller-Karger FE, McClain CR, Fisher TR, Esaias WE, Varela R. Pigment distribution in the Caribbean Sea: observations from space. Prog Oceanogr. 1989;23:23–64.

    Article  Google Scholar 

  • Müller-Karger FE, Hu C, Andréfouët S, Varela R, Thunell R. The color of the coastal ocean and applications in the solution of research and management problems. In: Miller RL, et al., editors. Remote sensing of coastal aquatic environments. Dordrecht: Springer; 2005. p. 102–27.

    Google Scholar 

  • National Research Council. Oil in the sea: inputs, fates, and effects. Washington, DC: The National Academies Press; 1985. https://doi.org/10.17226/314.

    Google Scholar 

  • NOAA. Edwing R, Next generation water level measurement system NGWLMS site design, preparation, and installation manual. Rockville; 1991. pp. 213.

    Google Scholar 

  • O’Reilly JE, Maritorena S, Mitchell BG, Siegel DA, Carder KL, Garver SA, Kahru M, McClain C. Ocean color algorithms for SeaWiFS. J Geophys Res. 1998;103:24,937–53. https://doi.org/10.1029/98JC02160.

    Article  Google Scholar 

  • Orr JC, Epitalon JM, Gattuso JP. Comparison of ten packages that compute ocean carbonate chemistry. Biogeosciences. 2015;12:1483–510. https://doi.org/10.5194/bg-12-1483-2015. www.biogeosciences.net/12/1483/2015/.

    Article  Google Scholar 

  • Paduan JD, Washburn L. High-frequency radar observations of ocean surface currents. Annu Rev Mar Sci. 2013;5:115–36.

    Article  Google Scholar 

  • Park, J, Heitsenrether R, Sweet WV. Water level and wave height estimates at NOAA . Tide stations from acoustic and microwave sensors. Silver Spring: NOAA technical report NOS CO-OPS 075. p. 41, 2014.

    Google Scholar 

  • Peng G, Garra Z, Halliwell GR, Smedstad OM, Meinen CS, Kourafalou V, Hogan P. Temporal variability of the Florida current transport at 27°N. In: Long JA, Wells DS, editors. Ocean circulation and El Nino: new research. New York: Nova Science Publishers; 2009. p. 119–37.

    Google Scholar 

  • Pinkel R, Smith JA. Repeat-sequence coding for improved precision of doppler sonar and sodar. J Atmos Ocean Technol. 1992;9:149–63. https://doi.org/10.1175/1520-0426(1992)009<0149:rscfip>2.0.co;2.

    Article  Google Scholar 

  • Pope RM, Fry ES. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt. 1997;36(33):8710.

    Article  Google Scholar 

  • Preston-Thomas H. The international temperature scale of 1990 (ITS-90). Metrologia. 1990;27(1):107.

    Article  Google Scholar 

  • Sarmiento JL, Gruber N. Ocean biogeochemical dynamics. Princeton: Princeton University Press; 2006. ISBN: 9780691017075. 528 pp.

    Google Scholar 

  • Schmidt WE, Woodward BT, Millikan KS, Guza RT, Raubenheimer B, Elgar S. A GPS-Tracked Surf Zone Drifter. J Atm Ocean Tech. 2003;20:1070–5.

    Article  Google Scholar 

  • Seidel MP, De Grandpre MD, Dickson AG. A sensor for in situ indicator-based measurements of seawater pH. Mar Chem. 2008;109:18–28.

    Article  Google Scholar 

  • Sieracki CK, Sieracki ME, Yentsch CS. An imaging-in-flow system for automated analysis of marine microplankton. Mar Ecol Prog Ser. 1998;168:285–96.

    Article  Google Scholar 

  • Strickland JDH, Parsons TR. A practical handbook of seawater analysis, Bulletin, vol. 167. Ottawa: Fisheries Research Board of Canada; 1972. 310 pp.

    Google Scholar 

  • Sverdrup HU, Johnson MW, Fleming RH. The oceans, their physics, chemistry, and general biology. New York: Prentice-Hall; 1942. p. c1942. http://ark.cdlib.org/ark:/13030/kt167nb66r/.

    Google Scholar 

  • Takeshita Y, Martz TR, Johnson KS, Dickson AG. Characterization of an ion sensitive field effect transistor and chloride ion selective electrodes for pH measurements in seawater. Anal Chem. 2014;86(22):11189–95. https://doi.org/10.1021/ac502631z.

    Article  Google Scholar 

  • Transportation Research Board and National Research Council. Oil in the sea III: inputs, fates, and effects. Washington, DC: The National Academies Press; 2003. https://doi.org/10.17226/10388.

    Google Scholar 

  • Werdell PJ, Bailey SW, Franz BA, Harding LW Jr, Feldman GC, McClain CR. Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua. Remote Sens Environ. 2009;113:1319–30.

    Article  Google Scholar 

  • Williams J. Oceanographic instrumentation. Annapolis: United States Naval Institute Press; 1973. 189 pp. ISBN: 0-87021-503–5.

    Google Scholar 

  • Zeebe RE. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu Rev Earth Planet Sci. 2012;40:141–65. https://doi.org/10.1146/annurev-earth-042711-105521.

    Article  Google Scholar 

  • Zhou Z, Guo L, Osburn CL. Fluorescence EEMs and PARAFAC techniques in the analysis of petroleum components in the water column. In: McGenity T, Timmis K, Nogales B, editors. Hydrocarbon and lipid microbiology protocols, Springer protocols handbooks. Berlin/Heidelberg: Springer; 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corredor, J.E. (2018). Electronic Sensors and Instruments for Coastal Ocean Observing. In: Coastal Ocean Observing. Springer, Cham. https://doi.org/10.1007/978-3-319-78352-9_2

Download citation

Publish with us

Policies and ethics