Skip to main content

Remarks About Spatially Structured SI Model Systems with Cross Diffusion

  • Chapter
  • First Online:
Contributions to Partial Differential Equations and Applications

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 47))

Abstract

One of the simplest deterministic mathematical model for the spread of an epidemic disease is the so-called SI system made of two Ordinary Differential Equations. It exhibits simple dynamics: a bifurcation parameter \(\mathscr {T}_0\) yielding persistence of the disease when \(\mathscr {T}_0 > 1\), else extinction occurs. A natural question is whether this gentle dynamic can be disturbed by spatial diffusion. It is straightforward to check it is not feasible for linear/nonlinear diffusions. When cross diffusion is introduced for suitable choices of the parameter data set this persistent state of the ODE model system becomes linearly unstable for the resulting initial and no-flux boundary value problem. On the other hand “natural” weak solutions can be defined for this initial and no-flux boundary value problem and proved to exist provided nonlinear and cross diffusivities satisfy some constraints. These constraints are not fully met for the parameter data set yielding instability. A remaining open question is: to which solutions does this apply? Periodic behaviors are observed for a suitable range of cross diffusivities.

The original version of this chapter was revised: Belated correction has been incorporated. The correction to this chapter is available at https://doi.org/10.1007/978-3-319-78325-3_24

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 05 April 2019

    Correction to: B. N. Chetverushkin et al. (eds.), Contributions to Partial Differential Equations and Applications, Computational Methods in Applied Sciences 47, https://doi.org/10.1007/978-3-319-78325-3_5

References

  1. Amann H (1995) Linear and quasilinear parabolic problems, vol I: abstract linear theory. Birkhäuser, Boston, MA

    Book  Google Scholar 

  2. Anaya V, Bendahmane M, Langais M, Sepúlveda M (2015) A convergent finite volume method for a model of indirectly transmitted diseases with nonlocal cross-diffusion. Comput Math Appl 70(2):132–157

    Article  MathSciNet  Google Scholar 

  3. Anaya V, Bendahmane M, Langais M, Sepúlveda M (2015) Pattern formation for a reaction diffusion system with constant and cross diffusion. In: Numerical mathematics and advanced applications—ENUMATH 2013, volume 103 of lecture notes in computational science and engineering. pp 153–161

    Google Scholar 

  4. Bendahmane M, Lepoutre T, Marrocco A, Perthame B (2009) Conservative cross diffusions and pattern formation through relaxation. J Math Pures Appl (9) 92(6):651–667

    Article  MathSciNet  Google Scholar 

  5. Bier M, Brak B (2015) A simple model to quantitatively account for periodic outbreaks of the measles in the Dutch Bible Belt. Eur Phys J B 88(4):107 (11 p)

    Article  MathSciNet  Google Scholar 

  6. Busenberg S, Cooke K (1993) Vertically transmitted diseases, vol 23. Biomathematics. Springer, Berlin

    Book  Google Scholar 

  7. Capasso V (1993) Mathematical structures of epidemic systems, vol 23. Lecture Notes in Biomathematics. Springer, Berlin

    Book  Google Scholar 

  8. Charron M, Kluiters G, Langlais M, Seegers H, Baylis M, Ezanno P (2013) Seasonal and spatial heterogeneities in host and vector abundances impact the spatiotemporal spread of bluetongue. Vet Res 44:44

    Article  Google Scholar 

  9. Desvillettes L, Lepoutre T, Moussa A (2014) Entropy, duality and cross diffusion. SIAM J Math Anal 46(1):820–853

    Article  MathSciNet  Google Scholar 

  10. Diekmann O, Heesterbeek H, Britton T (2012) Mathematical tools for understanding infectious disease dynamics, Princeton series in theoretical and computational biology. Princeton University Press, Princeton

    Book  Google Scholar 

  11. Ducrot A, Langlais M, Magal P (2012) Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Commun Pure Appl Anal 11(1):97–113

    Article  MathSciNet  Google Scholar 

  12. Fitzgibbon WE, Langlais M (2003) A diffusive S.I.S. model describing the propagation of F.I.V. Commun Appl Anal 7(2–3):387–403

    MathSciNet  MATH  Google Scholar 

  13. Fitzgibbon WE, Langlais M (2008) Simple models for the transmission of microparasites between host populations living on noncoincident spatial domains, vol 1936 of lecture notes in mathematics. In: Magal P, Ruan S (eds) Structured Population Models in Biology and Epidemiology, vol 1936. Springer, Berlin, pp 115–164

    Chapter  Google Scholar 

  14. Fitzgibbon WE, Langlais M, Morgan JJ (2004) A reaction-diffusion system on noncoincident spatial domains modeling the circulation of a disease between two host populations. Differ Int Equ 17(7–8):781–802

    MathSciNet  MATH  Google Scholar 

  15. Gambino G, Lombardo MC, Sammartino M (2012) Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion. Math Comput Simul 82(6):1112–1132

    Article  MathSciNet  Google Scholar 

  16. Goh BS (1978) Global stability in a class of prey-predator models. Bull Math Biol 40(4):525–533

    Article  MathSciNet  Google Scholar 

  17. Hale JK (1988) Asymptotic behavior of dissipative systems. American Mathematical Society, Providence, RI

    MATH  Google Scholar 

  18. Iida M, Mimura M, Ninomiya H (2006) Diffusion, cross-diffusion and competitive interaction. J Math Biol 53(4):617–641

    Article  MathSciNet  Google Scholar 

  19. Ladyzhenskaya OA, Solonnikov VA, Ural’ceva NN (1968) Linear and quasi-linear equations of parabolic type. Translations of mathematical monographs. American Mathematical Society, Providence, RI

    Book  Google Scholar 

  20. Morgan J (1989) Global existence for semilinear parabolic systems. SIAM J Math Anal 20(5):1128–1144

    Article  MathSciNet  Google Scholar 

  21. Morgan J (1990) Boundedness and decay results for reaction-diffusion systems. SIAM J Math Anal 21(5):1172–1189

    Article  MathSciNet  Google Scholar 

  22. Murray JD (2007/2003) Mathematical biology, vol I: an introduction, vol II: spatial models and biomedical applications. Springer, New York, 3rd edn

    Google Scholar 

  23. Okubo A, Levin SA (2002) Diffusion and ecological problems: modern perspectives, 2nd edn. Springer, New York

    MATH  Google Scholar 

  24. Pierre M (2003) Weak solutions and supersolutions in \(L^1\) for reaction-diffusion systems. J Evol Equ 3(1):153–168 (dedicated to Philippe Bénilan)

    Article  MathSciNet  Google Scholar 

  25. Tian C, Lin Z, Pedersen M (2010) Instability induced by cross-diffusion in reaction-diffusion systems. Nonlinear Anal Real World Appl 11(2):1036–1045

    Article  MathSciNet  Google Scholar 

  26. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans Roy Soc Lond Ser B 237(641):37–72

    Article  MathSciNet  Google Scholar 

  27. Yagi A (2010) Abstract parabolic evolution equations and their applications. Springer monographs in mathematics. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Langlais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anaya, V., Bendahmane, M., Langlais, M., Sepúlveda, M. (2019). Remarks About Spatially Structured SI Model Systems with Cross Diffusion. In: Chetverushkin, B., Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Periaux, J., Pironneau, O. (eds) Contributions to Partial Differential Equations and Applications. Computational Methods in Applied Sciences, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-78325-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78325-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78324-6

  • Online ISBN: 978-3-319-78325-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics