Skip to main content

Recursive Reductions of Action Dependencies for Coordination-Based Multiagent Planning

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XXVIII

Abstract

Currently the most efficient distributed multiagent planning scheme for deterministic models is based on coordination of local agents’ plans. In such a scheme, behavior of other agents is modeled using projections of their actions stripped of all private information. The planning scheme does not require any additional information, however using such can be beneficial for planning efficiency. Dependencies among the projected public actions caused by sequences of local private actions represent one particular type of such information.

In this work, we formally define several types of internal dependencies of multiagent planning problems and provide an algorithmic approach how to extract the internally dependent actions during multiagent planning. We show how to take an advantage of the computed dependencies by means of reducing the multiagent planning problems and analyze worst-case privacy leakage caused by the used dependencies. We integrate the reduction method into a distributed multiagent planner and summarize other efficiency improving techniques used in the planner. We experimentally show strong reduction of majority of standard multiagent benchmarks and nearly doubling of solved problems in comparison to a variant of a planner without the reductions. The efficiency of the method is demonstrated by winning in a recent competition of distributed multiagent planners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Whereas, in Strips, the second parameter is a set of actions, in MA-Strips, the second parameter is actually a set of sets of actions.

  2. 2.

    http://www.fast-downward.org/.

  3. 3.

    See http://agents.fel.cvut.cz/codmap.

References

  1. Bäckström, C., Jonsson, A., Jonsson, P.: Macros, reactive plans and compact representations. In: ECAI 2012, pp. 85–90 (2012). https://doi.org/10.3233/978-1-61499-098-7-85

  2. Bhattacharya, S., Kumar, V., Likhachev, M.: Search-based path planning with homotopy class constraints. In: Felner, A., Sturtevant, N.R. (eds.) SOCS. AAAI Press (2010). http://dblp.uni-trier.de/db/conf/socs/socs2010.html#BhattacharyaKL10

  3. Brafman, R.I.: A privacy preserving algorithm for multi-agent planning and search. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015. pp. 1530–1536. AAAI Press (2015). http://ijcai.org/Abstract/15/219

  4. Brafman, R.I., Domshlak, C.: From one to many: planning for loosely coupled multi-agent systems. In: ICAPS 2008, pp. 28–35 (2008)

    Google Scholar 

  5. Chen, Y., Yao, G.: Completeness and optimality preserving reduction for planning. In: Proceedings of 21st IJCAI, pp. 1659–1664 (2009)

    Google Scholar 

  6. Chrpa, L.: Generation of macro-operators via investigation of action dependencies in plans. Knowl. Eng. Rev. 25(3), 281–297 (2010). https://doi.org/10.1017/S0269888910000159

    Article  Google Scholar 

  7. Coles, A., Coles, A.: Completeness-preserving pruning for optimal planning. In: Proceedings of 19th ECAI, pp. 965–966 (2010)

    Google Scholar 

  8. Fikes, R., Nilsson, N.: STRIPS: a new approach to the application of theorem proving to problem solving. In: IJCAI 1971, pp. 608–620 (1971)

    Article  MATH  Google Scholar 

  9. Haslum, P.: Reducing accidental complexity in planning problems. In: Proceedings of 20th IJCAI, pp. 1898–1903 (2007)

    Google Scholar 

  10. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic search. J. Artif. Intell. Res. (JAIR) 14, 253–302 (2001). https://doi.org/10.1613/jair.855

    Article  MATH  Google Scholar 

  11. Jakubův, J., Tožička, J., Komenda, A.: Multiagent planning by plan set intersection and plan verification. In: Proceedings of ICAART 2015 (2015)

    Google Scholar 

  12. Jakubův, J., Wells, J.B.: Expressiveness of generic process shape types. In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010. LNCS, vol. 6084, pp. 103–119. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15640-3_8

    Chapter  Google Scholar 

  13. Jonsson, A.: The role of macros in tractable planning. J. Artif. Intell. Res. 36, 471–511 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Jonsson, P., Bäckström, C.: Tractable plan existence does not imply tractable plan generation. Ann. Math. Artif. Intell. 22, 281–296 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Makholm, H., Wells, J.B.: Instant polymorphic type systems for mobile process calculi: just add reduction rules and close. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 389–407. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0_27

    Chapter  MATH  Google Scholar 

  16. Nissim, R., Brafman, R.I.: Multi-agent A* for parallel and distributed systems. In: Proceedings of AAMAS 2012, pp. 1265–1266 (2012)

    Google Scholar 

  17. Tožička, J., Jakubův, J., Komenda, A.: On internally dependent public actions in multiagent planning. In: Proceedings of DMAP Workshop of ICAPS 2015 (2015)

    Google Scholar 

  18. Tožička, J., Jakubův, J., Durkota, K., Komenda, A., Pěchouček, M.: Multiagent planning supported by plan diversity metrics and landmark actions. In: Proceedings of ICAART 2014 (2014)

    Google Scholar 

  19. Tožička, J., Jakubův, J., Komenda, A.: Generating multi-agent plans by distributed intersection of finite state machines. In: ECAI 2014, pp. 1111–1112 (2014)

    Google Scholar 

  20. Tožička, J., Jakubův, J., Komenda, A.: PSM-based planners description for CoDMAP 2015 competition. In: CoDMAP 2015 (2015)

    Google Scholar 

  21. Tožička, J., Jakubuv, J., Komenda, A., Pěchouček, M.: Privacy-concerned multiagent planning. Knowl. Inf. Syst. 48, 581–618 (2015). http://link.springer.com/10.1007/s10115-015-0887-7

    Article  Google Scholar 

  22. Štolba, M., Komenda, A.: Relaxation heuristics for multiagent planning. In: 24th International Conference on Automated Planning and Scheduling (ICAPS), pp. 298–306 (2014)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Czech Science Foundation (no. 15-20433Y) and by the Czech Ministry of Education (no. SGS13/211/OHK3/3T/13). Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided under the program “Projects of Large Infrastructure for Research, Development, and Innovations” (LM2010005), is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonín Komenda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tožička, J., Jakubův, J., Komenda, A. (2018). Recursive Reductions of Action Dependencies for Coordination-Based Multiagent Planning. In: Nguyen, N., Kowalczyk, R., van den Herik, J., Rocha, A., Filipe, J. (eds) Transactions on Computational Collective Intelligence XXVIII. Lecture Notes in Computer Science(), vol 10780. Springer, Cham. https://doi.org/10.1007/978-3-319-78301-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78301-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78300-0

  • Online ISBN: 978-3-319-78301-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics