Skip to main content

Pearl Chapter: Basis of Photoaging and the Use of Chemical Peelings

  • Chapter
  • First Online:
Minimally Invasive Aesthetic Procedures

Abstract

Skin aging is determined by intrinsic and extrinsic factors. In the first case, the skin exhibits progressive, time-dependent deterioration signs, determined by endogenous factors. This process may also be induced or intensified by environmental factors, such as pollution, smoking, and sun exposure, which are extrinsic factors. Over time, molecular changes trigger organic alterations that, ultimately, lead to aging. With the increased life expectancy, the study of organic processes has been stimulated, with the purpose of minimizing aging effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noh EM, Park J, Song HR, Kim JM, Lee M, Song HK, Hong OY, Whang PH, Han MK. Skin aging-dependent activation of the PI3K signaling pathway via downregulation of PTEN increases intracellular ROS in human dermal fibroblasts. Oxidative Med Cell Longev. 2016;2016:6354261.

    Google Scholar 

  2. Kanaki T, Makrantonaki E, Zouboulis CC. Biomarkers of skin aging. Rev Endocr Metab Disord. 2016;17(3):433–42.

    CAS  PubMed  Google Scholar 

  3. Farage MA, Miler KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosm Sci. 2008;30:87–95.

    CAS  Google Scholar 

  4. Farage MA, Miler KW, Elsner P, Maibach HI. Characteristics of the aging skin. Adv Wound Care. 2013;2:5–10.

    Google Scholar 

  5. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A. 1992;89:10114–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith JR, Pereira-Smith OM. Replicative senescence: implications for in vivo aging and tumor suppression. Science. 1996;273:63–7.

    CAS  PubMed  Google Scholar 

  7. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science. 1999;286:774–9.

    CAS  PubMed  Google Scholar 

  8. Meyne J, Ratliff R, Moyzis R. Conservation of the human telomere sequence (TTAGGC)n among vertebrates. Proc Natl Acad Sci U S A. 1989;86:7049–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yaar M, Eller MS, Gilchrest BA. Fifty years of skin aging. J Investig Dermatol Symp Proc. 2002;7:51–8.

    PubMed  Google Scholar 

  10. Kosmadari MG, Gilchrest BA. The role of telomeres in skin aging/photoaging. Micron. 2004;35:155–9.

    Google Scholar 

  11. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92:9363–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yaar M, Gilchrest BA. Skin aging: postulated mechanisms and consequent changes in structure and function. Clin Geriatr Med. 2001;17:617–30.

    CAS  PubMed  Google Scholar 

  13. Rabe JH, Mamelak AJ, McElgunn PJ, Morison WL, Sauder DN. Photoaging: mechanisms and repair. J Am Acad Dermatol. 2006;55:1–19.

    PubMed  Google Scholar 

  14. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science. 2006;311:1257.

    CAS  PubMed  Google Scholar 

  15. Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science. 2011;333:1109–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Widmer R, Ziaja I, Grune T. Protein oxidation and degradation during aging: role in skin aging and neurodegeneration. Free Radic Res. 2006;40:1259–68.

    CAS  PubMed  Google Scholar 

  17. Yu BP, Yang R. Critical evaluation of the free radical theory of aging. A proposal for the oxidative stress hypothesis. Ann N Y Acad Sci. 1996;786:1–11.

    CAS  PubMed  Google Scholar 

  18. Callaghan TM, Wilhelm KP. A review of ageing and an examination of clinical methods in the assessment of ageing skin. Part I: cellular and molecular perspectives of skin ageing. Int J Cosmet Sci. 2008;30:313–22.

    CAS  PubMed  Google Scholar 

  19. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of aging. Nature. 2000;408:239–47.

    CAS  PubMed  Google Scholar 

  20. Kraft DC, Deacaris CC, Rattan SI. Proteasomal oscillation during mild heat shock in aging human skin fibroblasts. Ann N Y Acad Sci. 2006;1067:224–7.

    CAS  PubMed  Google Scholar 

  21. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.

    CAS  PubMed  Google Scholar 

  22. Gilchrest BA. In vitro assessment of keratinocyte aging. J Invest Dermatol. 1983;81:184s–9s.

    CAS  PubMed  Google Scholar 

  23. Cristofalo VJ, Pignolo RJ. Replicative senescence of human fibroblast-like cells in culture. Physiol Rev. 1993;73:617–38.

    CAS  PubMed  Google Scholar 

  24. Gilchrest BA, Vrabel MA, Flynn E, Szabo G. Selective cultivation of human melanocytes from newborn and adult epidermis. J Invest Dermatol. 1984;83:370–6.

    CAS  PubMed  Google Scholar 

  25. Waldera Lupa DM, Kalfalah F, Safferling K, Boukamp P, Poschmann G, Volpi E, Götz- Rösch C, Bernerd F, Haag L, Huebenthal U, Fritsche E, Boege F, Grabe N, Tigges J, Stühler K, Krutmann J. Characterization of skin aging-associated secreted proteins (SAASP) produced by dermal fibroblasts isolated from intrinsically aged human skin. J Invest Dermatol. 2015;135:1954–68.

    CAS  PubMed  Google Scholar 

  26. Velarde MC, Demaria M. Targeting senescent cells: possible implications for delaying skin aging: a mini-review. Gerontology. 2016;62(5):513–8.

    CAS  PubMed  Google Scholar 

  27. Kennedy SR, Loeb LA, Herr AJ. Somatic mutations in aging, cancer and neuro- degeneration. Mech Ageing Dev. 2012;133:118–26.

    CAS  PubMed  Google Scholar 

  28. Makrantonaki E, Pfeifer GP, Zouboulis CC. [Intrinsic factors, genes, and skin aging]. Hautarzt. 2016;67(2):103–6.

    Google Scholar 

  29. Makrantonaki E, Brink TC, Zampeli V, Elewa RM, Mlody B, Hossini AM, Hermes B, Krause U, Knolle J, Abdallah M, Adjaye J, Zouboulis CC. Identification of biomarkers of human skin ageing in both genders. Wnt signalling – a label of skin ageing? PLoS One. 2012;7(11):e50393. https://doi.org/10.1371/journal.pone.0050393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lener T, Moll PR, Rinnerthaler M, Bauer J, Aberger F, Richter K. Expression profiling of aging in the human skin. Exp Gerontol. 2006;41:387–97.

    CAS  PubMed  Google Scholar 

  31. Makrantonaki E, Zouboulis CC. William J. Cunliffe Scientific Awards. Characteristics and pathomechanisms of endogenously aged skin. Dermatology. 2007;214:352–60.

    PubMed  Google Scholar 

  32. Makrantonaki E, Bekou V, Zouboulis CC. Genetics and skin aging. Dermatoendocrinology. 2012;4:280–4.

    Google Scholar 

  33. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.

    PubMed  PubMed Central  Google Scholar 

  34. Labrie F, Belanger A, Cusan L, Gomez JL, Candas B. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab. 1997;82:2396–402.

    CAS  PubMed  Google Scholar 

  35. Pereira S. Dermatoses no idoso. In: Rotta O, editor. Guia de Dermatologia: clínica, cirúrgica e cosmiátrica. São Paulo: Manole; 2008. p. 567–91.

    Google Scholar 

  36. Verdier-Sevrain S, Bontè F, Gilchrest B. Biology of estrogens in skin: implications for skin aging. Exp Dermatol. 2006;15:83–94.

    CAS  PubMed  Google Scholar 

  37. Wolff EF, Narayan D, Taylor HS. Long-term effects of hormone therapy on skin rigidity and wrinkles. Fertil Steril. 2005;84:285–8.

    CAS  PubMed  Google Scholar 

  38. Bain J. Epidemiology, evaluation and diagnosis of andropause. Geriatr Aging. 2003;6(Suppl 10):4–8.

    Google Scholar 

  39. Tenover JL. Testosterone and the aging male. J Androl. 1997;18:103–6.

    CAS  PubMed  Google Scholar 

  40. Wulf HC, Sandby-Møller J, Kobayasi T, Gniadecki R. Skin aging and natural photoprotection. Micron. 2004;35:185–91.

    CAS  PubMed  Google Scholar 

  41. Vierkötter A, Krutmann J. Environmental influences on skin aging and ethnic-specific manifestations. Dermato-Endocrinology. 2012;4(3):227–31.

    PubMed  PubMed Central  Google Scholar 

  42. WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, global update 2005, summary of risk assessment; 2006. Available from: http://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/. Last accessed on 4 Apr 2016.

  43. Valacchi G, Sticozzi C, Pecorelli A, Cervellati F, Cervellati C, Maioli E. Cutaneous responses to environmental stressors. Ann N Y Acad Sci. 2012;1271:75–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Puri P, Nandar SK, Kathuria S, Ramesh V. Effects of air pollution on the skin: a review. Indian J Dermatol Venereol Leprol. 2017;83:415–23.

    PubMed  Google Scholar 

  45. Thiele JJ, Traber MG, Polefka TG, Cross CE, Packer L. Ozone-exposure depletes vitamin E and induces lipid peroxidation in murine stratum corneum. J Invest Dermatol. 1997;108:753–7.

    CAS  PubMed  Google Scholar 

  46. Valacchi G, Pagnin E, Okamoto T, Corbacho AM, Olano E, Davis PA, et al. Induction of stress proteins and MMP-9 by 0.8 ppm of ozone in murine skin. Biochem Biophys Res Commun. 2003;305:741–6.

    CAS  PubMed  Google Scholar 

  47. Rittié L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev. 2002;1:705–20.

    PubMed  Google Scholar 

  48. Lademann J, Schaefer H, Otberg N, Teichmann A, Blume-Peytavi U, Sterry W. Penetration of microparticles into human skin. Hautarzt. 2004;55:1117–9.

    CAS  PubMed  Google Scholar 

  49. Vierkötter A, Schikowski T, Ranft U, Sugiri D, Matsui M, Krämer U, et al. Airborne particle exposure and extrinsic skin aging. J Invest Dermatol. 2010;130:2719–26.

    PubMed  Google Scholar 

  50. Mills NL, Miller MR, Lucking AJ, Beveridge J, Flint L, Boere AJ, et al. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation. Eur Heart J. 2011;32:2660–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003;111:455–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Krutmann J, Jux B, Luecke S, Fritsche E, Abel J, Essel C, Rannug A. Involvement of arylhydrocarbon receptor (AhR-) signaling in skin melanogenesis. J Invest Dermatol. 2008;128:S220.

    Google Scholar 

  53. Penning TM. Dihydrodiol dehydrogenase and its role in polycyclic aromatic hydrocarbon metabolism. Chem Biol Interact. 1993;89:1–34.

    CAS  PubMed  Google Scholar 

  54. Daniell HW. Smooth tobacco and wrinkled skin. N Engl J Med. 1969;280:53.

    CAS  PubMed  Google Scholar 

  55. Kadunce DP, Burr R, Gress R, Kanner R, et al. Cigarette smoking: risk factor for premature facial wrinkling. Ann Intern Med. 1991;114:840–4.

    CAS  PubMed  Google Scholar 

  56. Kennedy C, Bastiaens MT, Bajdik CD, Willemze R, et al. Leiden skin cancer study. Effect of smoking and sun on the aging skin. J Invest Dermatol. 2003;120:548–54.

    CAS  PubMed  Google Scholar 

  57. Chow CK. Cigarette smoking and oxidative damage in the lung. Ann N Y Acad Sci. 1993;686:289–98.

    CAS  PubMed  Google Scholar 

  58. Boyd AS, Shyr Y, King LE Jr. Basal cell carcinoma in young women: an evaluation of the association of tanning bed use and smoking. J Am Acad Dermatol. 2002;46:706–9.

    PubMed  Google Scholar 

  59. Dietrich M, Block G, Norkus EP, Hudes M, Traber MG, Cross CE, et al. Smoking and exposure to environmental tobacco smoke decrease some plasma antioxidants and increase gamma-tocopherol in vivo after adjustment for dietary antioxidant intakes. Am J Clin Nutr. 2003;77:160–6.

    CAS  PubMed  Google Scholar 

  60. Jorgensen LN, Kallehave F, Christensen E, Siana JE, Gottrup F. Less collagen production in smokers. Surgery. 1998;123:450–5.

    CAS  PubMed  Google Scholar 

  61. Just M, Ribera M, Monsó E, Lorenzo JC, Ferrándiz C. Effect of smoking on skin elastic fibres: morphometric and immunohistochemical analysis. Br J Dermatol. 2007;156:85–91.

    CAS  PubMed  Google Scholar 

  62. Binic I, Lazarevic V, Ljubenovic M, Mojsa J, Sokolovic D. Skin ageing: natural weapons and strategies. Evid Based Complement Alternat Med. 2013;2013:1–10.

    Google Scholar 

  63. Landau M. Exogenous factors in skin aging. Curr Probl Dermatol. 2007;35:1–13.

    PubMed  Google Scholar 

  64. Berneburg M, Grether-Beck S, Kürten V, Ruzicka T, Briviba K, Sies H, et al. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biol Chem. 1999;274:15345–9.

    CAS  PubMed  Google Scholar 

  65. Montagner S, Costa A. Molecular basis of photoaging. An Bras Dermatol. 2009;84(3):263–9.

    PubMed  Google Scholar 

  66. Kligman LH. Intensification of ultraviolet-induced dermal damage by infrared radiation. Arch Dermatol Res. 1982;272:229–38.

    CAS  PubMed  Google Scholar 

  67. Schieke SM, Schroeder P, Krutmann J. Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms. Photodermatol Photoimmunol Photomed. 2003;19:228–34.

    CAS  PubMed  Google Scholar 

  68. Schroeder P, Haendeler J, Krutmann J. The role of near infrared radiation in photoaging of the skin. Exp Gerontol. 2008;43:629–32.

    CAS  PubMed  Google Scholar 

  69. Schroeder P, Calles C, Benesova T, Macaluso F, Krutmann J. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage. Skin Pharmacol Physiol. 2010;23:15–7.

    CAS  PubMed  Google Scholar 

  70. Sanches Silveira JEP, Myaki Pedroso DM. UV light and skin aging. Rev Environ Health. 2014;29:243–54. https://doi.org/10.1515/reveh-2014-0058.

    Article  CAS  PubMed  Google Scholar 

  71. Debacq-Chainiaux F, Leduc C, Verbeke A, Toussaint O. UV, stress and aging. Dermatoendocrinology. 2012;4:236–40.

    CAS  Google Scholar 

  72. Krutmann J. The role of UVA rays in skin aging. Eur J Dermatol. 2001;11:170–1.

    CAS  PubMed  Google Scholar 

  73. Reelfs O, Tyrrel RM, Pourzand C. Ultraviolet a radiation-induced immediate iron release is a key modulator of the activation of NF-kappaB in human skin fibroblasts. J Invest Dermatol. 2004;122:1440–7.

    CAS  PubMed  Google Scholar 

  74. Angel P, Szabowski A, Schorpp-Kistner M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene. 2001;20:2413–23.

    CAS  PubMed  Google Scholar 

  75. Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138:1462–70.

    CAS  PubMed  Google Scholar 

  76. Wang XY, Bi ZG. UVB-irradiated human keratinocytes and interleukin-1alpha indirectly increase MAP kinase/AP-1 activation and MMP-1 production in UVAirradiated dermal fibroblasts. Chin Med J (Engl). 2006;119:827–31.

    CAS  Google Scholar 

  77. Watanabe H, Shindo K, Ida H, Tanaka H, Nagasaka T, Shiozawa Z. Aging effects of sympathetic reflex activities on skin nerves. Gerontology. 2003;49:366–73.

    PubMed  Google Scholar 

  78. Ray AJ, Turner R, Nikaido O, Rees JL, Birch-Machin MA. The spectrum of mitochondrial DNA deletions is a ubiquitous marker of ultraviolet radiation exposure in human skin. J Invest Dermatol. 2000;115:674–9.

    CAS  PubMed  Google Scholar 

  79. Koch H, Wittern KP, Bergemann J. In human keratinocytes the common deletion reflects donor variabilities rather than chronologic aging and can be induced by ultraviolet A irradiation. J Invest Dermatol. 2000;117:892–7.

    Google Scholar 

  80. Ballard JW, Dean MD. The mitochondrial genome: mutation, selection and recombination. Curr Opin Genet Dev. 2001;11:667–72.

    CAS  PubMed  Google Scholar 

  81. Hernandez-Pigeon H, Jean C, Charruyer A, Haure MJ, Baudouin C, Charveron M, et al. UVA induces granzyme B in human keratinocytes through MIF: implication in extracellular matrix remodeling. J Biol Chem. 2007;282:8157–64.

    CAS  PubMed  Google Scholar 

  82. Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A. 1994;91:10771–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Eshaghian A, Vleugels R, Canter JA, McDonald MA, Stasko T, Sligh JE. Mitochondrial DNA deletions serve as biomarkers of aging in the skin, but are typically absent in nonmelanoma skin cancers. J Invest Dermatol. 2006;126:336–44.

    CAS  PubMed  Google Scholar 

  84. Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC. Spontaneous Kearns–Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci U S A. 1989;86:7952–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lu CY, Lee HC, Fahn HJ, Wei YH. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with largescale mtDNA deletions in aging human skin. Mutat Res. 1999;423:11–21.

    CAS  PubMed  Google Scholar 

  86. Cortopassi GA, Arnheim N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 1990;18:6927–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cortopassi GA, Shibata D, Soong NW, Arnheim N. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci U S A. 1992;89:7370–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Harbottle A, Krishnan KJ, Birch-Machin MA. Implications of using the ND1 gene as a control region for real-time PCR analysis of mitochondrial DNA deletions in human skin. J Invest Dermatol. 2004;122:1518–21.

    CAS  PubMed  Google Scholar 

  89. Krishnan KJ, Harbottle A, Birch-Machin MA. The use of a 3895 bp mitochondrial DNA deletion as a marker for sunlight exposure in human skin. J Invest Dermatol. 2004;123:1020–4.

    CAS  PubMed  Google Scholar 

  90. Berneburg M, Gattermann N, Stege H, Grewe M, Vogelsang K, Ruzicka T, et al. Chronically ultraviolet- exposed human skin shows a higher mutation frequency of mitochondrial DNA as compared to unexposed skin and the hematopoietic system. Photochem Photobiol. 1997;66:271–5.

    CAS  PubMed  Google Scholar 

  91. Berneburg M, Krutmann J. Mitochondrial DNA deletions in human skin reflect photo rather than chronologic aging. J Invest Dermatol. 1998;111:709–10.

    CAS  PubMed  Google Scholar 

  92. Berneburg M, Plettenberg H, Medve-König K, Pfahlberg A, Gers-Barlag H, Gefeller O, et al. Induction of the photoaging-associated mitochondrial common deletion in vivo in normal human skin. J Invest Dermatol. 2004;122:1277–83.

    CAS  PubMed  Google Scholar 

  93. Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: focus on oxidatively generated lesions. Free Radic Biol Med. 2017;107:110–24.

    CAS  PubMed  Google Scholar 

  94. Svobodova A, Walterova D, Vostalova J. Ultraviolet light induced alteration to the skin. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006;150:25–38.

    CAS  PubMed  Google Scholar 

  95. Gilchrest BA. Photoaging. J Invest Dermatol. 2013;133:E2–6. https://doi.org/10.1038/skinbio.2013.176.

    Article  PubMed  Google Scholar 

  96. Runger TM, Farahvash B, Hatvani Z, Rees A. Comparison of DNA damage responses following equimutagenic doses of UVA and UVB: a less effective cell cycle arrest with UVA may render UVA-induced pyrimidine dimers more mutagenic than UVB-induced ones. Photochem Photobiol Sci. 2012;11:207–15.

    PubMed  Google Scholar 

  97. Bosch R, Philips N, Suárez-Pérez J, Juarranz A, Devmurari A, Chalensouk-Khaosaat J, González S. Mechanisms of Photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals. Antioxidants. 2015;4:248–68. https://doi.org/10.3390/antiox4020248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bhatia-Dey N, Kanherkar RR, Stair SE, Makarev EO, Csoka AB. Cellular senescence as the causal nexus of aging. Front Genet. 2016;7:13. https://doi.org/10.3389/fgene.2016.00013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stege H, Roza L, Vink AA, Grewe M, Ruzicka T, Grether-Beck S, et al. Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. Proc Natl Acad Sci U S A. 2000;97:1790–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bender K, Blattner C, Knebel A, Iordanov M, Herrlich P, Rahmsdorf HJ. UV-induced signal transduction. J Photochem Photobiol B. 1997;37:1–2):1–17.

    CAS  PubMed  Google Scholar 

  101. Fritsche E, Schafer C, Calles C, Bernsmann T, Bernshausen T, Wurm M, Hubenthal U, Cline JE, Hajimiragha H, Schroeder P, Klotz LO, Rannug A, Furst P, Hanenberg H, Abel J, Krutmann J. Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc Natl Acad Sci U S A. 2007;104(21):8851–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Herrmann G, Wlaschek M, Lange TS, Prenzel K, Goerz G, Scharffetter-Kochanek K. UVA irradiation stimulates the synthesis of various matrix-metalloproteinases (MMPs) in cultured human fibroblasts. Exp Dermatol. 1993;2(2):92–7.

    CAS  PubMed  Google Scholar 

  103. Brenneisen P, Oh J, Wlaschek M, Wenk J, Briviba K, Hommel C, Herrmann G, Sies H, Scharffetter-Kochanek K. Ultraviolet B wavelength dependence for the regulation of two major matrix-metalloproteinases and their inhibitor TIMP-1 in human dermal fibroblasts. Photochem Photobiol. 1996;64(5):877–85.

    CAS  PubMed  Google Scholar 

  104. Brenneisen P, Sies H, Scharffetter-Kochanek K. Ultraviolet-B irradiation and matrix metalloproteinases: from induction via signaling to initial events. Ann N Y Acad Sci. 2002;973:31–43.

    CAS  PubMed  Google Scholar 

  105. Krutmann J, Morita A, Chung JH. Sun exposure: what molecular photodermatology tells us about its good and bad sides. J Invest Dermatol. 2012;132:976–84.

    CAS  PubMed  Google Scholar 

  106. Jux B, Kadow S, Luecke S, Rannug A, Krutmann J, Esser C. The aryl hydrocarbon receptor mediates UVB radiation-induced skin tanning. J Invest Dermatol. 2011;131(1):203–10.

    CAS  PubMed  Google Scholar 

  107. Karu TI. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol. 2008;84(5):1091–9.

    CAS  PubMed  Google Scholar 

  108. Schroeder P, Pohl C, Calles C, Marks C, Wild S, Krutmann J. Cellular response to infrared radiation involves retrograde mitochondrial signaling. Free Radic Biol Med. 2007;43:128–35.

    CAS  PubMed  Google Scholar 

  109. Darvin ME, Haag S, Meinke M, Zastrow L, Sterry W, Lademann J. Radical production by infrared A irradiation in human tissue. Skin Pharmacol Physiol. 2010;23:40–6.

    CAS  PubMed  Google Scholar 

  110. Krutmann J, Schroeder P. Role of mitochondria in photoaging of human skin: the defective powerhouse model. J Investig Dermatol Symp Proc. 2009;14(1):44–9.

    CAS  PubMed  Google Scholar 

  111. Chung JH, Eun HC. Angiogenesis in skin aging and photoaging. J Dermatol. 2007;34:593–600.

    CAS  PubMed  Google Scholar 

  112. Jantschitsch C, Weichenthal M, Maeda A, Proksch E, Schwarz T, Schwarz A. Infrared radiation does not enhance the frequency of ultraviolet radiation induced skin tumors, but their growth behaviour in mice. Exp Dermatol. 2011;20(4):346–50.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montagner, S., Da Costa, A. (2020). Pearl Chapter: Basis of Photoaging and the Use of Chemical Peelings. In: Costa, A. (eds) Minimally Invasive Aesthetic Procedures . Springer, Cham. https://doi.org/10.1007/978-3-319-78265-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78265-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78264-5

  • Online ISBN: 978-3-319-78265-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics