Specific Systems for Imaging

  • Chi Hong Sum
  • Samantha Marisha Shortall
  • Jessica Antoinetta Nicastro
  • Roderick SlavcevEmail author
Part of the Experientia Supplementum book series (EXS, volume 110)


Microscopy allows for the characterization of small objects invisible to the naked eye, a technique that, since its conception, has played a key role in the development across nearly every field of science and technology. Given the nanometer size of the materials explored in the field of nanotechnology, the contributions of modern microscopes that can visualize these materials are indispensable, and the ever-improving technology is paramount to the future success of the field. This chapter will focus on four fundamental areas of microscopy used in the field of nanotechnology including fluorescence microscopy (Sect. 3.1), particle tracking and photoactivated localization microscopy (Sect. 3.2), quantum dots and fluorescence resonance energy transfer (Sect. 3.3), and cellular MRI and PET labeling (Sect. 3.4). The functionality, as well as the current and recommended usage of each given imaging system, will be discussed.


Fluorescence microscopy Multiphoton microscopy Total internal reflection fluorescence microscopy Single particle tracking Quantum dot Fluorescence resonance energy transfer Cellular MRI PET labeling 


  1. Aalinkeel R, Nair B, Reynolds JL et al (2012) Quantum rods as nanocarriers of gene therapy. Drug Deliv 19:220–231CrossRefPubMedGoogle Scholar
  2. Aaron JS, Greene AC, Kotula PG et al (2011) Advanced optical imaging reveals the dependence of particle geometry on interactions between CdSe quantum dots and immune cells. Small 7:334–341CrossRefPubMedGoogle Scholar
  3. Altınoğlu Eİ, Adair JH (2010) Near infrared imaging with nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:461–477CrossRefPubMedGoogle Scholar
  4. Andresen V, Alexander S, Heupel W-M et al (2009) Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr Opin Biotechnol 20:54–62CrossRefPubMedGoogle Scholar
  5. Bae KH, Lee K, Kim C, Park TG (2011) Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials 32:176–184CrossRefPubMedGoogle Scholar
  6. Barroso MM (2011) Quantum dots in cell biology. J Histochem Cytochem 59:237–251CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bartlett DW, Su H, Hildebrandt IJ et al (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci 104:15549–15554CrossRefPubMedGoogle Scholar
  8. Barua S, Rege K (2010) The influence of mediators of intracellular trafficking on transgene expression efficacy of polymer–plasmid DNA complexes. Biomaterials 31:5894–5902CrossRefPubMedGoogle Scholar
  9. Basu S, Kwee TC, Surti S et al (2011) Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci 1228:1–18CrossRefPubMedGoogle Scholar
  10. Bélanger E, Turcotte R, Daradich A et al (2015) Maintaining polarization in polarimetric multiphoton microscopy. J Biophoton 8:884–888CrossRefGoogle Scholar
  11. Biju V, Anas A, Akita H et al (2012) FRET from quantum dots to photodecompose undesired acceptors and report the condensation and decondensation of plasmid DNA. ACS Nano 6:3776–3788CrossRefPubMedGoogle Scholar
  12. Braeckmans K, Buyens K, Naeye B et al (2010a) Advanced fluorescence microscopy methods illuminate the transfection pathway of nucleic acid nanoparticles. J Control Release 148:69–74CrossRefPubMedGoogle Scholar
  13. Braeckmans K, Buyens K, Bouquet W et al (2010b) Sizing nanomatter in biological fluids by fluorescence single particle tracking. Nano Lett 10:4435–4442CrossRefPubMedGoogle Scholar
  14. Brandén LJ, Mohamed a J, Smith CI (1999) A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 17:784–787. Scholar
  15. Brandenburg B, Zhuang X (2007) Virus trafficking - learning from single-virus tracking. Nat Rev Microbiol 5:197–208CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bryson JM, Fichter KM, Chu W-J et al (2009) Polymer beacons for luminescence and magnetic resonance imaging of DNA delivery. Proc Natl Acad Sci U S A 106:16913–16918CrossRefPubMedPubMedCentralGoogle Scholar
  17. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512CrossRefPubMedGoogle Scholar
  18. Chen HH, Ho Y-P, Jiang X et al (2008) Quantitative comparison of intracellular unpacking kinetics of polyplexes by a model constructed from quantum dot-FRET. Mol Ther 16:324–332CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen H, Wang H, Slipchenko MN et al (2009a) A multimodal platform for nonlinear optical microscopy and microspectroscopy. Opt Express 17:1282–1290. Scholar
  20. Chen HH, Ho Y-P, Jiang X et al (2009b) Simultaneous non-invasive analysis of DNA condensation and stability by two-step QD-FRET. Nano Today 4:125–134CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cheng S-H, Li F-C, Souris JS et al (2012) Visualizing dynamics of sub-hepatic distribution of nanoparticles using intravital multiphoton fluorescence microscopy. ACS Nano 6:4122–4131CrossRefPubMedGoogle Scholar
  22. Christensen DJ, Nedergaard M (2011) Two-photon in vivo imaging of cells. Pediatr Nephrol 26:1483–1489CrossRefPubMedGoogle Scholar
  23. Christensen DJ, Gottlin EB, Benson RE, Hamilton PT (2001) Phage display for target-based antibacterial drug discovery. Drug Discov Today 6:721–727CrossRefPubMedGoogle Scholar
  24. Chu S-W, Chen S-Y, Tsai T-H et al (2003) In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt Express 11:3093–3099. Scholar
  25. de Vito G, Bifone A, Piazza V (2012) Rotating-polarization CARS microscopy: combining chemical and molecular orientation sensitivity. Opt Express 20:29369CrossRefPubMedGoogle Scholar
  26. Dupont A, Lamb DC (2011) Nanoscale three-dimensional single particle tracking. Nanoscale 3:4532CrossRefPubMedGoogle Scholar
  27. Fritzky L, Lagunoff D (2013) Advanced methods in fluorescence microscopy. Anal Cell Pathol 36:5–17CrossRefGoogle Scholar
  28. Gao M, Wang M, Miller KD et al (2010) Facile synthesis of carbon-11-labeled cholesterol-based cationic lipids as new potential PET probes for imaging of gene delivery in cancer. Steroids 75:715–720CrossRefPubMedGoogle Scholar
  29. Grigsby CL, Ho Y-P, Leong KW (2012) Understanding nonviral nucleic acid delivery with quantum dot-FRET nanosensors. Nanomedicine 7:565–577CrossRefPubMedGoogle Scholar
  30. Hayek A, Ercelen S, Zhang X et al (2007) Conjugation of a new two-photon fluorophore to poly(ethylenimine) for gene delivery imaging. Bioconjug Chem 18:844–851CrossRefPubMedGoogle Scholar
  31. Herranz F, Almarza E, Rodríguez I et al (2011) The application of nanoparticles in gene therapy and magnetic resonance imaging. Microsc Res Tech 74:577–591. Scholar
  32. Hess GT, Humphries WH, Fay NC, Payne CK (2007) Cellular binding, motion, and internalization of synthetic gene delivery polymers. Biochim Biophys Acta - Mol Cell Res 1773:1583–1588CrossRefGoogle Scholar
  33. Hoover EE, Squier JA (2013) Advances in multiphoton microscopy technology. Nat Photon 7:93–101CrossRefGoogle Scholar
  34. Huang F, Dempsey C, Chona D, Suh J (2011) Quantitative nanoparticle tracking: applications to nanomedicine. Nanomedicine 6:693–700. Scholar
  35. Hutter E, Maysinger D (2011) Gold nanoparticles and quantum dots for bioimaging. Microsc Res Tech 74:592–604CrossRefPubMedGoogle Scholar
  36. Jouvenet N, Bieniasz PD, Simon SM (2008) Imaging the biogenesis of individual HIV-1 virions in live cells. Nature 454:236–240CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kang JH, Chung J-K (2008) Molecular-genetic imaging based on reporter gene expression. J Nucl Med 49:164S–179SCrossRefPubMedGoogle Scholar
  38. Kato M, Akao M, Matsumoto-Ida M et al (2009) The targeting of cyclophilin D by RNAi as a novel cardioprotective therapy: evidence from two-photon imaging. Cardiovasc Res 83:335–344CrossRefPubMedGoogle Scholar
  39. Kenny GD, Villegas-Llerena C, Tagalakis AD et al (2012) Multifunctional receptor-targeted nanocomplexes for magnetic resonance imaging and transfection of tumours. Biomaterials 33:7241–7250CrossRefPubMedGoogle Scholar
  40. Kim BH, Lee N, Kim H et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631CrossRefGoogle Scholar
  41. Kobat D, Horton NG, Xu C (2011) In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J Biomed Opt 16:106014CrossRefPubMedGoogle Scholar
  42. Kuo K-W, Chen T-H, Kuo W-T et al (2010) Cell uptake and intracellular visualization using quantum dots or nuclear localization signal-modified quantum dots with gold nanoparticles as quenchers. J Nanosci Nanotechnol 10(7):4173CrossRefPubMedGoogle Scholar
  43. Lee J-H, Lee K, Moon SH et al (2009) All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed 48:4174–4179CrossRefGoogle Scholar
  44. Lee P-W, Hsu S-H, Tsai J-S et al (2010a) Multifunctional core-shell polymeric nanoparticles for transdermal DNA delivery and epidermal Langerhans cells tracking. Biomaterials 31:2425–2434CrossRefPubMedGoogle Scholar
  45. Lee H, Kim I-K, Park TG (2010b) Intracellular trafficking and unpacking of siRNA/quantum dot-PEI complexes modified with and without cell penetrating peptide: confocal and flow cytometric FRET analysis. Bioconjug Chem 21:289–295CrossRefPubMedGoogle Scholar
  46. Li Q, Wu SSH, Chou KC (2009) Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging. Biophys J 97:3224–3228CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li J, Zhu Y, Hazeldine ST et al (2012) Cyclam-based polymeric copper chelators for gene delivery and potential PET imaging. Biomacromolecules 13:3220–3227CrossRefPubMedPubMedCentralGoogle Scholar
  48. Li W, Liu R, Wang Y et al (2013) Temporal techniques: dynamic tracking of nanomaterials in live cells. Small 9:1585–1594CrossRefPubMedGoogle Scholar
  49. Liu G, Swierczewska M, Niu G et al (2011) Molecular imaging of cell-based cancer immunotherapy. Mol Biosyst 7:993CrossRefPubMedPubMedCentralGoogle Scholar
  50. Liu G, Gao J, Ai H, Chen X (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9:1533–1545CrossRefPubMedGoogle Scholar
  51. Martini J, Schmied K, Palmisano R et al (2007) Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time. J Struct Biol 158:401–409CrossRefPubMedGoogle Scholar
  52. Mattheyses AL, Axelrod D (2006) Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence. J Biomed Opt 11:14006CrossRefGoogle Scholar
  53. Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123Google Scholar
  54. Mattheyses AL, Atkinson CE, Simon SM (2011) Imaging single endocytic events reveals diversity in clathrin, dynamin and vesicle dynamics. Traffic 12:1394–1406CrossRefPubMedPubMedCentralGoogle Scholar
  55. Medarova Z, Pham W, Farrar C et al (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nature Publishing GroupCrossRefPubMedGoogle Scholar
  56. Meng Meng Lin MM, Do Kyung Kim DK, El Haj AJ, Dobson J (2008) Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans Nanobiosci 7:298–305CrossRefGoogle Scholar
  57. Mojzisova H, Vermot J (2011) When multiphoton microscopy sees near infrared. Curr Opin Genet Dev 21:549–557CrossRefPubMedGoogle Scholar
  58. Namgung R, Zhang Y, Fang QL et al (2011) Multifunctional silica nanotubes for dual-modality gene delivery and MR imaging. Biomaterials 32:3042–3052CrossRefPubMedGoogle Scholar
  59. Paoli J, Smedh M, Ericson MB (2009) Multiphoton laser scanning microscopy—a novel diagnostic method for superficial skin cancers. Semin Cutan Med Surg 28:190–195CrossRefPubMedGoogle Scholar
  60. Parhamifar L, Moghimi SM (2012) Total internal reflection fluorescence (TIRF) microscopy for real-time imaging of nanoparticle-cell plasma membrane interaction. In: Nanoparticles in biology and medicine. Humana, Totowa, NJ, pp 473–482CrossRefGoogle Scholar
  61. Pierobon P, Cappello G (2012) Quantum dots to tail single bio-molecules inside living cells. Adv Drug Deliv Rev 64:167–178CrossRefPubMedGoogle Scholar
  62. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S et al (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775CrossRefPubMedGoogle Scholar
  63. Ruthardt N, Lamb DC, Bräuchle C (2011) Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol Ther 19:1199–1211. Scholar
  64. Sauer AM, de Bruin KG, Ruthardt N et al (2009a) Dynamics of magnetic lipoplexes studied by single particle tracking in living cells. J Control Release 137:136–145. Scholar
  65. Sauer AM, de Bruin KG, Ruthdart N, et al (2009b) CIPSM - dynamics of magnetic lipoplexes studied by single particle tracking in living cells. J Control Release 137:136.145.CrossRefPubMedGoogle Scholar
  66. Sen D, Deerinck TJ, Ellisman MH et al (2008) Quantum dots for tracking dendritic cells and priming an immune response in vitro and in vivo. PLoS One 3:e3290CrossRefPubMedPubMedCentralGoogle Scholar
  67. Shaheen SM, Akita H, Yamashita A et al (2011) Quantitative analysis of condensation/decondensation status of pDNA in the nuclear sub-domains by QD-FRET. Nucleic Acids Res 39:e48–e48CrossRefGoogle Scholar
  68. Shao D, Zeng Q, Fan Z et al (2012) Monitoring HSV-TK/ganciclovir cancer suicide gene therapy using CdTe/CdS core/shell quantum dots. Biomaterials 33:4336–4344CrossRefPubMedGoogle Scholar
  69. Son JH, Lim CS, Han JH et al (2011) Two-photon lysotrackers for in vivo imaging. J Org Chem 76:8113–8116CrossRefPubMedGoogle Scholar
  70. Steyer JA, Almers W (1999) Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys J 76:2262–2271CrossRefPubMedPubMedCentralGoogle Scholar
  71. Subramaniam P, Lee SJ, Shah S et al (2012) Generation of a library of non-toxic quantum dots for cellular imaging and siRNA delivery. Adv Mater 24:4014–4019CrossRefPubMedPubMedCentralGoogle Scholar
  72. Suh J, An Y, Tang BC et al (2012) Real-time gene delivery vector tracking in the endo-lysosomal pathway of live cells. Microsc Res Tech 75:691–697CrossRefPubMedGoogle Scholar
  73. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839. Scholar
  74. Tkaczyk ER, Tkaczyk AH (2011) Multiphoton flow cytometry strategies and applications. Cytom Part A 79A:775–788CrossRefGoogle Scholar
  75. Toomre D, Manstein DJ (2001) Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol 11:298–303CrossRefPubMedGoogle Scholar
  76. Trexler AJ, Taraska JW (2017) Two-color total internal reflection fluorescence microscopy of exocytosis in endocrine cells. Humana, New York, NY, pp 151–165Google Scholar
  77. Tromsdorf UI, Bruns OT, Salmen SC et al (2009) A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9:4434–4440CrossRefPubMedGoogle Scholar
  78. Turcotte R, Rutledge DJ, Bélanger E et al (2016) Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy. Sci Rep 6:31685CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ulasov AV, Khramtsov YV, Trusov GA et al (2011) Properties of PEI-based polyplex nanoparticles that correlate with their transfection efficacy. Mol Ther 19:103–112CrossRefPubMedGoogle Scholar
  80. Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243:221–226CrossRefGoogle Scholar
  81. Vercauteren D, Deschout H, Remaut K et al (2011) Dynamic colocalization microscopy to characterize intracellular trafficking of nanomedicines. ACS Nano 5:7874–7884CrossRefPubMedGoogle Scholar
  82. Waerzeggers Y, Monfared P, Viel T et al (2009) Methods to monitor gene therapy with molecular imaging. Methods 48:146–160CrossRefPubMedGoogle Scholar
  83. Wang X, Yao S, Ahn H-Y et al (2010) Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging. Biomed Opt Express 1:453–462CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wang J, Zhan Y, Bao N, Lu C (2012a) Quantitative measurement of quantum dot uptake at the cell population level using microfluidic evanescent-wave-based flow cytometry. Lab Chip 12:1441CrossRefPubMedGoogle Scholar
  85. Wang C, Ravi S, Martinez GV et al (2012b) Dual-purpose magnetic micelles for MRI and gene delivery. J Control Release 163:82–92CrossRefPubMedPubMedCentralGoogle Scholar
  86. Writer MJ, Kyrtatos PG, Bienemann AS et al (2012) Lipid peptide nanocomplexes for gene delivery and magnetic resonance imaging in the brain. J Control Release 162:340–348CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wu M, Kempaiah R, Huang P-JJ et al (2011a) Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27:2731–2738. Scholar
  88. Wu Y, Ho Y-P, Mao Y et al (2011b) Uptake and intracellular fate of multifunctional nanoparticles: a comparison between lipoplexes and polyplexes via quantum dot mediated Förster resonance energy transfer. Mol Pharm 8:1662–1668CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wu Y, Eisele K, Doroshenko M et al (2012) A quantum dot photoswitch for DNA detection, gene transfection, and live-cell imaging. Small 8:3465–3475CrossRefPubMedGoogle Scholar
  90. Zhang Y, Wang T-H (2012) Quantum dot enabled molecular sensing and diagnostics. Theranostics 2:631–654CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zhao Y, Lin L-N, Lu Y et al (2012) Synthesis of tunable theranostic Fe3O4@mesoporous silica nanospheres for biomedical applications. Adv Healthc Mater 1:327–331CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Chi Hong Sum
    • 1
  • Samantha Marisha Shortall
    • 1
  • Jessica Antoinetta Nicastro
    • 1
  • Roderick Slavcev
    • 1
    Email author
  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations