Skip to main content

Specific Systems for Imaging

  • Chapter
  • First Online:

Part of the book series: Experientia Supplementum ((EXS,volume 110))

Abstract

Microscopy allows for the characterization of small objects invisible to the naked eye, a technique that, since its conception, has played a key role in the development across nearly every field of science and technology. Given the nanometer size of the materials explored in the field of nanotechnology, the contributions of modern microscopes that can visualize these materials are indispensable, and the ever-improving technology is paramount to the future success of the field. This chapter will focus on four fundamental areas of microscopy used in the field of nanotechnology including fluorescence microscopy (Sect. 3.1), particle tracking and photoactivated localization microscopy (Sect. 3.2), quantum dots and fluorescence resonance energy transfer (Sect. 3.3), and cellular MRI and PET labeling (Sect. 3.4). The functionality, as well as the current and recommended usage of each given imaging system, will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aalinkeel R, Nair B, Reynolds JL et al (2012) Quantum rods as nanocarriers of gene therapy. Drug Deliv 19:220–231

    Article  CAS  PubMed  Google Scholar 

  • Aaron JS, Greene AC, Kotula PG et al (2011) Advanced optical imaging reveals the dependence of particle geometry on interactions between CdSe quantum dots and immune cells. Small 7:334–341

    Article  CAS  PubMed  Google Scholar 

  • Altınoğlu Eİ, Adair JH (2010) Near infrared imaging with nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:461–477

    Article  CAS  PubMed  Google Scholar 

  • Andresen V, Alexander S, Heupel W-M et al (2009) Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr Opin Biotechnol 20:54–62

    Article  CAS  PubMed  Google Scholar 

  • Bae KH, Lee K, Kim C, Park TG (2011) Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials 32:176–184

    Article  CAS  PubMed  Google Scholar 

  • Barroso MM (2011) Quantum dots in cell biology. J Histochem Cytochem 59:237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett DW, Su H, Hildebrandt IJ et al (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci 104:15549–15554

    Article  PubMed  Google Scholar 

  • Barua S, Rege K (2010) The influence of mediators of intracellular trafficking on transgene expression efficacy of polymer–plasmid DNA complexes. Biomaterials 31:5894–5902

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Kwee TC, Surti S et al (2011) Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci 1228:1–18

    Article  CAS  PubMed  Google Scholar 

  • Bélanger E, Turcotte R, Daradich A et al (2015) Maintaining polarization in polarimetric multiphoton microscopy. J Biophoton 8:884–888

    Article  CAS  Google Scholar 

  • Biju V, Anas A, Akita H et al (2012) FRET from quantum dots to photodecompose undesired acceptors and report the condensation and decondensation of plasmid DNA. ACS Nano 6:3776–3788

    Article  CAS  PubMed  Google Scholar 

  • Braeckmans K, Buyens K, Naeye B et al (2010a) Advanced fluorescence microscopy methods illuminate the transfection pathway of nucleic acid nanoparticles. J Control Release 148:69–74

    Article  CAS  PubMed  Google Scholar 

  • Braeckmans K, Buyens K, Bouquet W et al (2010b) Sizing nanomatter in biological fluids by fluorescence single particle tracking. Nano Lett 10:4435–4442

    Article  CAS  PubMed  Google Scholar 

  • Brandén LJ, Mohamed a J, Smith CI (1999) A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 17:784–787. https://doi.org/10.1038/11726

    Article  PubMed  Google Scholar 

  • Brandenburg B, Zhuang X (2007) Virus trafficking - learning from single-virus tracking. Nat Rev Microbiol 5:197–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryson JM, Fichter KM, Chu W-J et al (2009) Polymer beacons for luminescence and magnetic resonance imaging of DNA delivery. Proc Natl Acad Sci U S A 106:16913–16918

    Article  PubMed  PubMed Central  Google Scholar 

  • Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512

    Article  CAS  PubMed  Google Scholar 

  • Chen HH, Ho Y-P, Jiang X et al (2008) Quantitative comparison of intracellular unpacking kinetics of polyplexes by a model constructed from quantum dot-FRET. Mol Ther 16:324–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Wang H, Slipchenko MN et al (2009a) A multimodal platform for nonlinear optical microscopy and microspectroscopy. Opt Express 17:1282–1290. https://doi.org/10.1364/OE.17.001282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen HH, Ho Y-P, Jiang X et al (2009b) Simultaneous non-invasive analysis of DNA condensation and stability by two-step QD-FRET. Nano Today 4:125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng S-H, Li F-C, Souris JS et al (2012) Visualizing dynamics of sub-hepatic distribution of nanoparticles using intravital multiphoton fluorescence microscopy. ACS Nano 6:4122–4131

    Article  CAS  PubMed  Google Scholar 

  • Christensen DJ, Nedergaard M (2011) Two-photon in vivo imaging of cells. Pediatr Nephrol 26:1483–1489

    Article  PubMed  Google Scholar 

  • Christensen DJ, Gottlin EB, Benson RE, Hamilton PT (2001) Phage display for target-based antibacterial drug discovery. Drug Discov Today 6:721–727

    Article  CAS  PubMed  Google Scholar 

  • Chu S-W, Chen S-Y, Tsai T-H et al (2003) In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt Express 11:3093–3099. https://doi.org/10.1364/OE.11.003093

    Article  PubMed  Google Scholar 

  • de Vito G, Bifone A, Piazza V (2012) Rotating-polarization CARS microscopy: combining chemical and molecular orientation sensitivity. Opt Express 20:29369

    Article  CAS  PubMed  Google Scholar 

  • Dupont A, Lamb DC (2011) Nanoscale three-dimensional single particle tracking. Nanoscale 3:4532

    Article  CAS  PubMed  Google Scholar 

  • Fritzky L, Lagunoff D (2013) Advanced methods in fluorescence microscopy. Anal Cell Pathol 36:5–17

    Article  CAS  Google Scholar 

  • Gao M, Wang M, Miller KD et al (2010) Facile synthesis of carbon-11-labeled cholesterol-based cationic lipids as new potential PET probes for imaging of gene delivery in cancer. Steroids 75:715–720

    Article  CAS  PubMed  Google Scholar 

  • Grigsby CL, Ho Y-P, Leong KW (2012) Understanding nonviral nucleic acid delivery with quantum dot-FRET nanosensors. Nanomedicine 7:565–577

    Article  CAS  PubMed  Google Scholar 

  • Hayek A, Ercelen S, Zhang X et al (2007) Conjugation of a new two-photon fluorophore to poly(ethylenimine) for gene delivery imaging. Bioconjug Chem 18:844–851

    Article  CAS  PubMed  Google Scholar 

  • Herranz F, Almarza E, Rodríguez I et al (2011) The application of nanoparticles in gene therapy and magnetic resonance imaging. Microsc Res Tech 74:577–591. https://doi.org/10.1002/jemt.20992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hess GT, Humphries WH, Fay NC, Payne CK (2007) Cellular binding, motion, and internalization of synthetic gene delivery polymers. Biochim Biophys Acta - Mol Cell Res 1773:1583–1588

    Article  CAS  Google Scholar 

  • Hoover EE, Squier JA (2013) Advances in multiphoton microscopy technology. Nat Photon 7:93–101

    Article  CAS  Google Scholar 

  • Huang F, Dempsey C, Chona D, Suh J (2011) Quantitative nanoparticle tracking: applications to nanomedicine. Nanomedicine 6:693–700. https://doi.org/10.2217/nnm.11.42

    Article  PubMed  CAS  Google Scholar 

  • Hutter E, Maysinger D (2011) Gold nanoparticles and quantum dots for bioimaging. Microsc Res Tech 74:592–604

    Article  CAS  PubMed  Google Scholar 

  • Jouvenet N, Bieniasz PD, Simon SM (2008) Imaging the biogenesis of individual HIV-1 virions in live cells. Nature 454:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Chung J-K (2008) Molecular-genetic imaging based on reporter gene expression. J Nucl Med 49:164S–179S

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Akao M, Matsumoto-Ida M et al (2009) The targeting of cyclophilin D by RNAi as a novel cardioprotective therapy: evidence from two-photon imaging. Cardiovasc Res 83:335–344

    Article  CAS  PubMed  Google Scholar 

  • Kenny GD, Villegas-Llerena C, Tagalakis AD et al (2012) Multifunctional receptor-targeted nanocomplexes for magnetic resonance imaging and transfection of tumours. Biomaterials 33:7241–7250

    Article  CAS  PubMed  Google Scholar 

  • Kim BH, Lee N, Kim H et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631

    Article  CAS  Google Scholar 

  • Kobat D, Horton NG, Xu C (2011) In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J Biomed Opt 16:106014

    Article  PubMed  Google Scholar 

  • Kuo K-W, Chen T-H, Kuo W-T et al (2010) Cell uptake and intracellular visualization using quantum dots or nuclear localization signal-modified quantum dots with gold nanoparticles as quenchers. J Nanosci Nanotechnol 10(7):4173

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Lee K, Moon SH et al (2009) All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed 48:4174–4179

    Article  CAS  Google Scholar 

  • Lee P-W, Hsu S-H, Tsai J-S et al (2010a) Multifunctional core-shell polymeric nanoparticles for transdermal DNA delivery and epidermal Langerhans cells tracking. Biomaterials 31:2425–2434

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Kim I-K, Park TG (2010b) Intracellular trafficking and unpacking of siRNA/quantum dot-PEI complexes modified with and without cell penetrating peptide: confocal and flow cytometric FRET analysis. Bioconjug Chem 21:289–295

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Wu SSH, Chou KC (2009) Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging. Biophys J 97:3224–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhu Y, Hazeldine ST et al (2012) Cyclam-based polymeric copper chelators for gene delivery and potential PET imaging. Biomacromolecules 13:3220–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Liu R, Wang Y et al (2013) Temporal techniques: dynamic tracking of nanomaterials in live cells. Small 9:1585–1594

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Swierczewska M, Niu G et al (2011) Molecular imaging of cell-based cancer immunotherapy. Mol Biosyst 7:993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Gao J, Ai H, Chen X (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9:1533–1545

    Article  CAS  PubMed  Google Scholar 

  • Martini J, Schmied K, Palmisano R et al (2007) Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time. J Struct Biol 158:401–409

    Article  CAS  PubMed  Google Scholar 

  • Mattheyses AL, Axelrod D (2006) Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence. J Biomed Opt 11:14006

    Article  Google Scholar 

  • Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123

    Google Scholar 

  • Mattheyses AL, Atkinson CE, Simon SM (2011) Imaging single endocytic events reveals diversity in clathrin, dynamin and vesicle dynamics. Traffic 12:1394–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medarova Z, Pham W, Farrar C et al (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nature Publishing Group

    Article  CAS  PubMed  Google Scholar 

  • Meng Meng Lin MM, Do Kyung Kim DK, El Haj AJ, Dobson J (2008) Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans Nanobiosci 7:298–305

    Article  Google Scholar 

  • Mojzisova H, Vermot J (2011) When multiphoton microscopy sees near infrared. Curr Opin Genet Dev 21:549–557

    Article  CAS  PubMed  Google Scholar 

  • Namgung R, Zhang Y, Fang QL et al (2011) Multifunctional silica nanotubes for dual-modality gene delivery and MR imaging. Biomaterials 32:3042–3052

    Article  CAS  PubMed  Google Scholar 

  • Paoli J, Smedh M, Ericson MB (2009) Multiphoton laser scanning microscopy—a novel diagnostic method for superficial skin cancers. Semin Cutan Med Surg 28:190–195

    Article  CAS  PubMed  Google Scholar 

  • Parhamifar L, Moghimi SM (2012) Total internal reflection fluorescence (TIRF) microscopy for real-time imaging of nanoparticle-cell plasma membrane interaction. In: Nanoparticles in biology and medicine. Humana, Totowa, NJ, pp 473–482

    Chapter  Google Scholar 

  • Pierobon P, Cappello G (2012) Quantum dots to tail single bio-molecules inside living cells. Adv Drug Deliv Rev 64:167–178

    Article  CAS  PubMed  Google Scholar 

  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S et al (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  CAS  PubMed  Google Scholar 

  • Ruthardt N, Lamb DC, Bräuchle C (2011) Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol Ther 19:1199–1211. https://doi.org/10.1038/mt.2011.102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauer AM, de Bruin KG, Ruthardt N et al (2009a) Dynamics of magnetic lipoplexes studied by single particle tracking in living cells. J Control Release 137:136–145. https://doi.org/10.1016/j.jconrel.2009.04.003

    Article  PubMed  CAS  Google Scholar 

  • Sauer AM, de Bruin KG, Ruthdart N, et al (2009b) CIPSM - dynamics of magnetic lipoplexes studied by single particle tracking in living cells. J Control Release 137:136.145.

    Article  CAS  PubMed  Google Scholar 

  • Sen D, Deerinck TJ, Ellisman MH et al (2008) Quantum dots for tracking dendritic cells and priming an immune response in vitro and in vivo. PLoS One 3:e3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaheen SM, Akita H, Yamashita A et al (2011) Quantitative analysis of condensation/decondensation status of pDNA in the nuclear sub-domains by QD-FRET. Nucleic Acids Res 39:e48–e48

    Article  CAS  Google Scholar 

  • Shao D, Zeng Q, Fan Z et al (2012) Monitoring HSV-TK/ganciclovir cancer suicide gene therapy using CdTe/CdS core/shell quantum dots. Biomaterials 33:4336–4344

    Article  CAS  PubMed  Google Scholar 

  • Son JH, Lim CS, Han JH et al (2011) Two-photon lysotrackers for in vivo imaging. J Org Chem 76:8113–8116

    Article  CAS  PubMed  Google Scholar 

  • Steyer JA, Almers W (1999) Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys J 76:2262–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniam P, Lee SJ, Shah S et al (2012) Generation of a library of non-toxic quantum dots for cellular imaging and siRNA delivery. Adv Mater 24:4014–4019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh J, An Y, Tang BC et al (2012) Real-time gene delivery vector tracking in the endo-lysosomal pathway of live cells. Microsc Res Tech 75:691–697

    Article  CAS  PubMed  Google Scholar 

  • Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839. https://doi.org/10.1016/j.neuron.2006.05.019

    Article  PubMed  CAS  Google Scholar 

  • Tkaczyk ER, Tkaczyk AH (2011) Multiphoton flow cytometry strategies and applications. Cytom Part A 79A:775–788

    Article  Google Scholar 

  • Toomre D, Manstein DJ (2001) Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol 11:298–303

    Article  CAS  PubMed  Google Scholar 

  • Trexler AJ, Taraska JW (2017) Two-color total internal reflection fluorescence microscopy of exocytosis in endocrine cells. Humana, New York, NY, pp 151–165

    Google Scholar 

  • Tromsdorf UI, Bruns OT, Salmen SC et al (2009) A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9:4434–4440

    Article  CAS  PubMed  Google Scholar 

  • Turcotte R, Rutledge DJ, Bélanger E et al (2016) Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy. Sci Rep 6:31685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulasov AV, Khramtsov YV, Trusov GA et al (2011) Properties of PEI-based polyplex nanoparticles that correlate with their transfection efficacy. Mol Ther 19:103–112

    Article  CAS  PubMed  Google Scholar 

  • Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243:221–226

    Article  CAS  Google Scholar 

  • Vercauteren D, Deschout H, Remaut K et al (2011) Dynamic colocalization microscopy to characterize intracellular trafficking of nanomedicines. ACS Nano 5:7874–7884

    Article  CAS  PubMed  Google Scholar 

  • Waerzeggers Y, Monfared P, Viel T et al (2009) Methods to monitor gene therapy with molecular imaging. Methods 48:146–160

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yao S, Ahn H-Y et al (2010) Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging. Biomed Opt Express 1:453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhan Y, Bao N, Lu C (2012a) Quantitative measurement of quantum dot uptake at the cell population level using microfluidic evanescent-wave-based flow cytometry. Lab Chip 12:1441

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Ravi S, Martinez GV et al (2012b) Dual-purpose magnetic micelles for MRI and gene delivery. J Control Release 163:82–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Writer MJ, Kyrtatos PG, Bienemann AS et al (2012) Lipid peptide nanocomplexes for gene delivery and magnetic resonance imaging in the brain. J Control Release 162:340–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Kempaiah R, Huang P-JJ et al (2011a) Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27:2731–2738. https://doi.org/10.1021/la1037926

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Ho Y-P, Mao Y et al (2011b) Uptake and intracellular fate of multifunctional nanoparticles: a comparison between lipoplexes and polyplexes via quantum dot mediated Förster resonance energy transfer. Mol Pharm 8:1662–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Eisele K, Doroshenko M et al (2012) A quantum dot photoswitch for DNA detection, gene transfection, and live-cell imaging. Small 8:3465–3475

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang T-H (2012) Quantum dot enabled molecular sensing and diagnostics. Theranostics 2:631–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Lin L-N, Lu Y et al (2012) Synthesis of tunable theranostic Fe3O4@mesoporous silica nanospheres for biomedical applications. Adv Healthc Mater 1:327–331

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick Slavcev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sum, C.H., Shortall, S.M., Nicastro, J.A., Slavcev, R. (2018). Specific Systems for Imaging. In: Slavcev, R., Wettig, S., Zeng, Z. (eds) Nanomedicine. Experientia Supplementum, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-319-78259-1_3

Download citation

Publish with us

Policies and ethics