Advertisement

Analyzing \(\mathop{\mathrm{L_{q}}}\nolimits (\mathcal{K})\)

  • Jennifer Hyndman
  • J. B. Nation
Chapter
  • 201 Downloads
Part of the CMS Books in Mathematics book series (CMSBM)

Abstract

To further investigate the structure of \(\mathop{\mathrm{L_{q}}}\nolimits (\mathcal{K})\), where \(\mathcal{K}\) is a locally finite quasivariety of finite type, we want algorithms to determine
  1. (1)

    the quasicritical algebras T in \(\mathcal{K}\),

     
  2. (2)

    the order on join irreducible quasivarieties, i.e., when \(\langle \mathbf{T}\rangle \leq \langle \mathbf{S}\rangle\),

     
  3. (3)

    the join dependencies, i.e., when \(\langle \mathbf{T}\rangle \leq \langle \mathbf{S}_{1}\rangle \vee \cdots \vee \langle \mathbf{S}_{n}\rangle\) nontrivially.

     

Bibliography

  1. [2]
    M.E. Adams, W. Dziobiak, Lattices of quasivarieties of 3-element algebras. J. Algebra 166, 181–210 (1994)MathSciNetCrossRefGoogle Scholar
  2. [10]
    K. Adaricheva, Characterization of lattices of subsemilattices. Algebra Logic 30, 385–404 (1991)MathSciNetCrossRefGoogle Scholar
  3. [12]
    K. Adaricheva, W. Dziobiak, V.A. Gorbunov, Algebraic point lattices of quasivarieties. Algebra Logic 36, 213–225 (1997)MathSciNetCrossRefGoogle Scholar
  4. [13]
    K. Adaricheva, V.A. Gorbunov, Equational closure operator and forbidden semidistributive lattices. Siberian Math. J. 30, 831–849 (1989)MathSciNetCrossRefGoogle Scholar
  5. [14]
    K. Adaricheva, V.A. Gorbunov, On lower bounded lattices. Algebra Univers. 46, 203–213 (2001)MathSciNetCrossRefGoogle Scholar
  6. [15]
    K. Adaricheva, V.A. Gorbunov, V.I. Tumanov, Join-semidistributive lattices and convex geometries. Adv. Math. 173, 1–49 (2003)MathSciNetCrossRefGoogle Scholar
  7. [19]
    K. Adaricheva, J.B. Nation, Lattices of quasi-equational theories as congruence lattices of semilattices with operators, Parts I and II. Int. J. Algebra Comput. 22, N7 (2012)MathSciNetzbMATHGoogle Scholar
  8. [20]
    K. Adaricheva, J.B. Nation, Lattices of algebraic subsets and implicational classes, in Lattice Theory: Special Topics and Applications, vol. 2, Chapter 4, ed. by G. Grätzer, F. Wehrung (Brikhäuser, Cham, 2016)Google Scholar
  9. [21]
    K. Adaricheva, J.B. Nation, R. Rand, Ordered direct implicational basis of a finite closure system. Discrete Appl. Math. 161, 707–723 (2013)MathSciNetCrossRefGoogle Scholar
  10. [28]
    C. Bergman, R. McKenzie, Minimal varieties and quasivarieties. J. Aust. Math. Soc. (Ser. A) 48, 133–147 (1990)MathSciNetCrossRefGoogle Scholar
  11. [49]
    A. Day, Characterizations of finite lattices that are bounded-homomorphic images or sublattices of free lattices. Can. J. Math. 31, 69–78 (1979)MathSciNetCrossRefGoogle Scholar
  12. [55]
    W. Dziobiak, On atoms in the lattice of quasivarieties. Algebra Univers. 24, 32–35 (1987)MathSciNetCrossRefGoogle Scholar
  13. [58]
    W. Dziobiak, J. Ježek, M. Maróti, Minimal varieties and quasivarieties of semilattices with one automorphism. Semigroup Forum 78, 253–261 (2009)MathSciNetCrossRefGoogle Scholar
  14. [69]
    R. Freese, J. Ježek, J.B. Nation, Free Lattices. Mathematical Surveys and Monographs, vol. 42 (American Mathematical Society, Providence, 1995)Google Scholar
  15. [70]
    R. Freese, K. Kearnes, J.B. Nation, Congruence lattices of congruence semidistributive algebras, in Lattice Theory and Its Applications (Darmstadt, 1991), pp. 63–78; Res. Exp. Math., vol. 23 (Heldermann, Lemgo, 1995)Google Scholar
  16. [71]
    R. Freese, J.B. Nation, Congruence lattices of semilattices. Pac. J. Math. 49, 51–58 (1973)MathSciNetCrossRefGoogle Scholar
  17. [77]
    V.A. Gorbunov, Algebraic Theory of Quasivarieties (Plenum, New York, 1998)zbMATHGoogle Scholar
  18. [78]
    V.A. Gorbunov, V.I. Tumanov, A class of lattices of quasivarieties. Algebra Logic 19, 38–52 (1980)MathSciNetCrossRefGoogle Scholar
  19. [94]
    B. Jónsson, J.B. Nation, A report on sublattices of a free lattice, in Contributions to Universal Algebra. Coll. Math. Soc. János Bolyai, vol. 17 (North-Holland Publishing Co., 1977), pp. 223–257Google Scholar
  20. [106]
    K. Kearnes, J.B. Nation, Axiomatizable and nonaxiomatizable congruence prevarieties. Algebra Univers. 59, 323–335 (2008)MathSciNetCrossRefGoogle Scholar
  21. [107]
    K. Kearnes, Á. Szendrei, A characterization of minimal locally finite varieties. Trans. Am. Math. Soc. 349, 1749–1768 (1997)MathSciNetCrossRefGoogle Scholar
  22. [115]
    R. McKenzie, Equational bases and non-modular lattice varieties. Trans. Am. Math. Soc. 174, 1–43 (1972)CrossRefGoogle Scholar
  23. [146]
    P. Pudlák, J. Tůma, Yeast graphs and fermentation of algebraic lattices. Coll. Math. Soc. János Bolyai 14, 301–341 (1976)zbMATHGoogle Scholar
  24. [150]
    M. Sapir, Varieties with a finite number of subquasivarieties. Siberian Math. J. 22, 934–949 (1981)MathSciNetCrossRefGoogle Scholar
  25. [154]
    M.V. Semenova, On lattices that are embeddable into lattices of suborders. Algebra Logic 44, 270–285 (2005)MathSciNetCrossRefGoogle Scholar
  26. [159]
    A. Shafaat, On implicational completeness. Can. J. Math. 26, 761–768 (1974)MathSciNetCrossRefGoogle Scholar
  27. [163]
    Á. Szendrei, A survey on strictly simple algebras and minimal varieties, in Universal Algebra and Quasigroup Theory (Jadwisin, 1989). Res. Exp. Math., vol. 19 (Heldermann, Berlin, 1992), pp. 209–239Google Scholar
  28. [164]
    V.I. Tumanov, Embedding theorems for join-semidistributive lattices, in Proc. 6th All-Union Conference on Math. Logic, Tbilisi (1982), p. 188Google Scholar
  29. [167]
    F. Wehrung, Sublattices of complete lattices with continuity conditions. Algebra Univers. 53, 149–173 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jennifer Hyndman
    • 1
  • J. B. Nation
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of Northern British ColumbiaPrince GeorgeCanada
  2. 2.Department of MathematicsUniversity of HawaiiHonoluluUSA

Personalised recommendations