Advertisement

Patterns of Consumption and Connectedness in GIS Web Sources

  • Andrea Ballatore
  • Simon Scheider
  • Rob Lemmens
Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

Every day, practitioners, researchers, and students consult the Web to meet their information needs about GIS concepts and tools. How do we improve GIS in terms of conceptual organisation, findability, interoperability and relevance for user needs? So far, efforts have been mainly top-down, overlooking the actual usage of software and tools. In this article, we critically explore the potential of Web science to gain knowledge about tool usage and public interest in GIScience concepts. First, we analyse behavioural data from Google Trends, showing clear patterns in searches for GIS software. Second, we analyse the visits to GIScience-related websites, highlighting the continued dominance of ESRI, but also the rapid emergence of Web-based new tools and services. We then study the views of Wikipedia articles to enable the quantification of methods and tools’ popularity. Fourth, we deploy web crawling and network analysis on the ArcGIS documentation to observe the relevance and conceptual associations among tools. Finally, in order to facilitate the study of GIS usage across the Web, we propose a linked-data inventory to identify Web resources related to GI concepts, methods, and tools. This inventory will also enable researchers, practitioners, and students to find what methods are available across software packages, and where to get information about them.

Keywords

GIS Geographic information science GIScience GIS operations Web science Google Trends Wikipedia ArcGIS Linked data 

References

  1. Albrecht J (1998) Universal analytical GIS operations: a task-oriented systematization of data structure-independent GIS functionality. In: Onsrud H, Craglia M (eds) Geographic information research: transatlantic perspectives. Taylor and Francis, New York, pp 577–591Google Scholar
  2. Ballatore A, Kuhn W, Hegarty M, Parsons E (2016) Spatial approaches to information search. Spat Cogn Comput 16(4):245–254Google Scholar
  3. Bernard L, Mäs S, Müller M, Henzen C, Brauner J (2014) Scientific geodata infrastructures: challenges, approaches and directions. Int J Digit Earth 7(7):613–633CrossRefGoogle Scholar
  4. Blei DM (2012) Probabilistic topic models. Commun ACM 55(4):77–84CrossRefGoogle Scholar
  5. Boyd D, Crawford K (2011) Six provocations for Big Data. In: Decade in internet time: symposium on the dynamics of the internet and society. Oxford Internet Institute, Oxford, UKGoogle Scholar
  6. Brauner J (2015) Formalizations for geooperators–geoprocessing in spatial data infrastructures. PhD thesis, TU Dresden, Dresden, GermanyGoogle Scholar
  7. Caliskan A, Bryson JJ, Narayanan A (2017) Semantics derived automatically from language corpora contain human-like biases. Science 356(6334):183–186CrossRefGoogle Scholar
  8. Castellano G, Fanelli A, Torsello M (2013) Web usage mining: discovering usage patterns for web applications. In: Velsquez J, Palade V, Jain L (eds) Advanced techniques in web intelligence—2. Studies in computational intelligence, vol 452. Springer, Berlin, pp 75–104Google Scholar
  9. Choi H, Varian H (2012) Predicting the present with Google Trends. Econ Rec 88(1):2–9Google Scholar
  10. Ferrara E, De Meo P, Fiumara G, Baumgartner R (2014) Web data extraction, applications and techniques: a survey. Knowl-Based Syst 70:301–323CrossRefGoogle Scholar
  11. Gao S, Goodchild MF (2013) Asking spatial questions to identify GIS functionality. In: Fourth international conference on computing for geospatial research and application (COM. Geo). IEEE, pp 106–110Google Scholar
  12. Goel S, Hofman JM, Lahaie S, Pennock DM, Watts DJ (2010) Predicting consumer behavior with web search. Proc Natl Acad Sci USA 107(41):17486–17490CrossRefGoogle Scholar
  13. Hecht B, Hong L, Suh B, Chi EH (2011) Tweets from Justin Bieber’s Heart: the dynamics of the location field in user profiles. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’11, New York. ACM, pp 237–246Google Scholar
  14. Hendler J, Shadbolt N, Hall W, Berners-Lee T, Weitzner D (2008) Web science: an interdisciplinary approach to understanding the web. Commun ACM 51(7):60–69CrossRefGoogle Scholar
  15. Hey T, Tansley S, Tolle KM et al (2009) The fourth paradigm: data-intensive scientific discovery, vol 1. Microsoft Research, Redmond, WAGoogle Scholar
  16. Hinsen K (2014) Computational science: shifting the focus from tools to models. F1000Research 3(101)Google Scholar
  17. Hofer B, Mäs S, Brauner J, Bernard L (2017) Towards a knowledge base to support geoprocessing workflow development. Int J Geogr Inf Sci 31(4):694–716CrossRefGoogle Scholar
  18. Hollenstein L, Purves R (2010) Exploring place through user-generated content: using Flickr tags to describe city cores. J Spat Inf Sci 1:21–48Google Scholar
  19. Hu Y, Janowicz K, Prasad S, Gao S (2015) Enabling semantic search and knowledge discovery for ArcGIS Online: a linked-data-driven approach. AGILE 2015. Springer, Berlin, pp 107–124Google Scholar
  20. Janowicz K, Van Harmelen F, Hendler JA, Hitzler P (2014) Why the data train needs semantic rails. AI Mag 36(1):Google Scholar
  21. Kuhn W (2012) Core concepts of spatial information for transdisciplinary research. Int J Geogr Inf Sci 26(12):2267–2276CrossRefGoogle Scholar
  22. Kuhn W, Ballatore A (2015) Designing a language for spatial computing. In: Bacao F, Santos MY, Painho M (eds) AGILE 2015: geographic information science as an enabler of smarter cities and communities. Springer, Berlin, pp 309–326Google Scholar
  23. Kveladze I, Kraak M-J, van Elzakker CP (2013) A methodological framework for researching the usability of the space-time cube. Cartogr J 50(3):201–210CrossRefGoogle Scholar
  24. Lazer D, Kennedy R, King G, Vespignani A (2014) The parable of Google Flu: traps in big data analysis. Science 343(6176):1203–1205CrossRefGoogle Scholar
  25. Lemmens R (2006) Semantic interoperability of distributed geo-services. PhD thesis, TU Delft, Delft, The NetherlandsGoogle Scholar
  26. Ludäscher B, Lin K, Bowers S, Jaeger-Frank E, Brodaric B, Baru C (2006) Managing scientific data: from data integration to scientific workflows. Geol Soc Am Spec Papers 397:109–129Google Scholar
  27. McKenzie G, Janowicz K, Gao S, Yang J-A, Hu Y (2015) POI pulse: a multi-granular, semantic signature-based information observatory for the interactive visualization of big geosocial data. Cartogr: Int J Geogr Inf Geovis 50(2):71–85Google Scholar
  28. Ramage D, Hall D, Nallapati R, Manning CD (2009) Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora. In: Proceedings of the 2009 conference on empirical methods in natural language processing, vol 1. Association for Computational Linguistics, pp 248–256Google Scholar
  29. Scheider S, Ballatore A (2018) Semantic typing of linked geoprocessing workflows. Int J Digit Earth 11(1):113–138CrossRefGoogle Scholar
  30. Scheider S, Ostermann FO, Adams B (2017) Why good data analysts need to be critical synthesists. Determining the role of semantics in data analysis. Future Gener Comput Syst 72:11–22CrossRefGoogle Scholar
  31. Stefanidis A, Crooks A, Radzikowski J (2013) Harvesting ambient geospatial information from social media feeds. GeoJournal 78(2):319–338CrossRefGoogle Scholar
  32. Steiniger S, Hunter AJ (2013) The 2012 free and open source GIS software map—A guide to facilitate research, development, and adoption. Computers, Environment and Urban Systems 39:136–150CrossRefGoogle Scholar
  33. Stell JG, Worboys MF (1999) Generalizing graphs using amalgamation and selection. In: Güting RH, Papadias D, Lochovsky F (eds) Advances in spatial databases: 6th international symposium, SSD’99 Hong Kong, China, July 20–23, 1999 proceedings. Springer, Berlin, pp 19–32CrossRefGoogle Scholar
  34. Stephens-Davidowitz SI (2013) Essays using Google Data. PhD thesis, Harvard University, Cambridge, MAGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geography, BirkbeckUniversity of LondonLondonUK
  2. 2.Human Geography and PlanningUniversiteit UtrechtUtrechtThe Netherlands
  3. 3.Faculty of Geo-Information Science and Earth Observation (ITC)University of TwenteEnschedeThe Netherlands

Personalised recommendations