Interpolation of Rainfall Through Polynomial Regression in the Marche Region (Central Italy)

Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Notwithstanding its small size (less than 10,000 km2), because of its varied topography, ranging from the Apennines Range (up to more than 2000 m amsl) to coastal environments, the Marche Region (the Adriatic side of Central Italy), is characterized by many different types of climate. In this region there are no fully satisfactory models to interpolate and generalize rainfall data from the 111 available meteorological recording stations; however, in this study an innovative way to interpret data linking precipitation to many topographic parameters is introduced. Based on those considerations, statistical analyses were carried out on rainfall historical series in order to assess significantly variations during the last 60 years and to create a model capable of explaining rainfall distribution based on geographical and topographic parameters. The model highlighted a significant decrease of rainfall from 1961–1990 to 1991–2016, over the whole period, in the hilly and mountainous sectors (100–200 mm), while closer to the coast the difference is slight (about 0–100 mm). The new model also highlights the presence of some outliers in the rainfall values, which may lead to a better comprehension of climatic dynamics in this area.


Rainfall Marche region Multiple regressions GIS Climate 


  1. Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines on climate metadata and homogenization, WMO/TD No. 1186, WCDMP No. 53; WMO, Geneve, CHGoogle Scholar
  2. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Griffiths G (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111.
  3. Amici M, Spina R (2002) Campo medio della precipitazione annuale e stagionale sulle Marche per il periodo 1950–2000. Macerata, IT, Centro di Ecologia e Climatologia - Osservatorio Geofisico SperimentaleGoogle Scholar
  4. Andermann C, Bonnet S, Gloaguen R (2001) Evaluation of precipitation data sets along Himalayan front. Geochem Geophys GeosystGoogle Scholar
  5. Anselin L (1995) Local indicators of spatial association—LISA. Geograp Anal 27:93–115. CrossRefGoogle Scholar
  6. Basist A, Bell GD, Meentemeyer V (1994) Statistical relationships between topography and precipitation patterns. J Clim 7:1305–1315Google Scholar
  7. Biondi E, Baldoni MA, Talamonti MC (1991) Il fitoclima delle Marche. Atti Conv, Salvaguardia e Gestione dei Beni ambientali nelle Marche, Ancona, ITGoogle Scholar
  8. Bisci C, Dramis F, Fazzini M, AltobelloL Dorigato S (2001) Analyse des trends termo-pluviometriques du versant Adriatique compris entre la lagune de Venice et le Cap de Santa Maria di Leuca (Italie orientale). Actes XIV Congr Ass Intern Climatologie, Seville, ESP, Climat et environnementGoogle Scholar
  9. Bisci C, Farabollini P, Fazzini M, FolchiVici C, Viglione F (1996) Variations récents des précipitations en la Région Marche (Italie Centrale). Coll Assoc Intern deClimatologie, Strasbourg, FRGoogle Scholar
  10. Bisci C, Fazzini M (2002) Climatic features of the central southern Marches (Central Italy). In: Proceedings of “Natural hazard on built-up areas” CERG—Camerino, 45–47Google Scholar
  11. Bisci C, Fazzini M, Coccia N (2002) Analyse spatio-temporelle des séries des températures dans l’Apennin centre-méridionale italien par rapport aux paramètres topo-géographiques. Applications de la climatologie aux echelles fines. Actes XV Congr Ass Intern Climatologie, Besançon, FRGoogle Scholar
  12. Bisci C, Fazzini M, Folchi Vici C, Viglione F (1994) Multivariateanalysis of time trend of rainfall in the Marche area (Central Italy). In: I.G.U. Commission on Climatology, Contemporary Climatology, Brno, CZGoogle Scholar
  13. Bordi I, Frigio S, Parenti P, Speranza A, Sutera A (2001) The analysis of the standardized precipitation index in the Mediterranean area: regional patterns. Ann Geof 44:979–993Google Scholar
  14. Brunetti M, Buffoni L, Mangianti F, Maugeri M, Nanni T (2006a) Temperature, precipitation and extreme events during the last century in Italy. Glob Planet Change 40:141–149CrossRefGoogle Scholar
  15. Brunetti M, Maugeri M, Nanni T (2000a) Variations of temperature and precipitation in Italy from 1866 to 1995. Theor Appl Climatol 65:165–174CrossRefGoogle Scholar
  16. Brunetti M, Maugeri M, Nanni T (2000b) Trends of minimum and maximum daily temperatures in Italy from 1865 to 1996. Theor Appl Climatol 66:49–60CrossRefGoogle Scholar
  17. Brunetti M, Maugeri M, Monti F, Nanni T (2006b) Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int J Climatol 26:345–381. CrossRefGoogle Scholar
  18. Brunsdon C, McClatchey J, Unwin DJ (2001) Spatial variations in the average rainfall–altitude relationship in Great Britain: an approach using geographically weighted regression. Int J Climatol 21.
  19. Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the “Rich-Get-Richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005. CrossRefGoogle Scholar
  20. Colombo T, Pelino V, Vergari S, Cristofanelli P, Bonasoni P (2007) Study of temperature and precipitation variations in Italy based on surface instrumental observations. Glob Planet Change 57(3):308–318CrossRefGoogle Scholar
  21. Craddock JM (1979) Methods of comparing annual rainfall records for climatic porposes. Weather 34Google Scholar
  22. Crisciotti C, Preziosi E (1996) Analisi della variabilità spaziale della precipitazione nel bacino del Fiume Nera (Italia centrale): primi risultati. V Conv. Naz, Giovani Ricercatori in Geologia Applicata, Cagliari, ITGoogle Scholar
  23. Fazzini M, Bisci C, Dramis F, Altobello L, Dorigato S, Fubelli G, Molin P (2002) Statistic analisys of thermometric and pluviometric trends along the Adriatic side of the Italian peninsula. Proc. IAG Intern. Symp, Addis Ababa, ETHGoogle Scholar
  24. Geiger R (1954) Landolt-Börnstein – Zahlenwerte und FunktionenausPhysik, Chemie, Astronomie, Geophysik und Technik. alteSerie, vol 3, Ch. Klassifikation der Klimatenach W. Köppen, Springer, pp 603–607Google Scholar
  25. Gutowski WJJR, Raymond WA, Kawazoe S, Flory DM, Takle ES, Biner S, Snyder MA (2008) Regional extreme monthly precipitation simulated by NARCCAP RCMs. J Hydrometeor 11Google Scholar
  26. Hijmans RJ, Susan E, Cameron SE, Parra JL, Jones PG, Jarvis A (2008) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. CrossRefGoogle Scholar
  27. Johnston K, VerHoef JM, Krivoruchko K, Lucas N (2001) Using ArcGis geostatistical analyst. Redlands, USA, ESRIGoogle Scholar
  28. Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional-climate model. I: assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449. Google Scholar
  29. Köppen W (1900) VersucheinerKlassifikation der Klimate, vorzugsweisenachihren Beziehungenzur Pflanzenwelt. Geogr Zeitschr 6(593–611):657–679Google Scholar
  30. Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20, 2011–2026.
  31. Rossetti R, Bisci C, Dramis F, Fazzini M, Speranza A (1997) Etude de la distribution des precipitations en fonction des caracteres geographiques et morphometriques de la règion Marche (Italie centrale, cote adriatique). Coll Assoc Intern de Climatologie, Quebec, CANGoogle Scholar
  32. Salmi T, Määttä A, Anttila P, Amnell T (2013) Makesens 1.0.xls, Meteorological Finnish InstituteGoogle Scholar
  33. Serrano A, Matos VL, Garcia JA (1999) Trend analysis of monthly precipitation over the iberian peninsula for the period 1921–1995. Phys Chem Earth Pt B 24:85–90CrossRefGoogle Scholar
  34. Spina R, Stortini S, Fusari R, Scuterini C, Di Marino M (2002) Caratterizzazione climatologica delle Marche: campo medio della temperatura per il periodo 1950-200. Centro di Ecologia e Climatologia - Osservatorio Geofisico Sperimentale, Macerata, ITGoogle Scholar
  35. Tebaldi CL, Mearns O, Nychka D, Smith RL (2004) Regional probabilities of precipitation change: a Bayesian analysis of multimodel simulations. Geophys. Res 31.
  36. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138. CrossRefGoogle Scholar
  37. Van den Brink HW, Können GP (2008) The statistical distribution of meteorological outliers. Geophys Res 35.
  38. Wang Y, Zhou L (2005) Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation, Geophys Res 32.
  39. World Meteorological Organization (2011) Guide to climatological practices. WMO No. 100, WMO, Geneve, CHGoogle Scholar
  40. Wong WSD, Lee J (2005) Statistical analysis of geographic information with arcview GIS and ArcGIS. Wiley, Hoboken, USAGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Sciences and TechnologiesUniversity of CamerinoCamerinoItaly
  2. 2.MacerataItaly
  3. 3.Department of Agriculture, Health and Environment, Natural Resources InstituteUniversity of Greenwich at MedwayChathamUK
  4. 4.Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly

Personalised recommendations