Identifying and Interpreting Clusters of Persons with Similar Mobility Behaviour Change Processes

  • David Jonietz
  • Dominik Bucher
  • Henry Martin
  • Martin Raubal
Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

With the emergence of new mobility options and various initiatives to increase the sustainability of our travel behaviour, it is desirable to gain a deeper understanding of our behavioural reactions to such stimuli. Although it is now possible to use GPS-tracking to record people’s movement behaviour over a longer period, there is still a lack of computational methods which allow to detect and evaluate such behaviour change processes in the resulting datasets. In this study, we propose a data mining method for describing individual persons’ mobility behaviour change processes based on their movement trajectories and clustering participants based on the similarity of these behavioural adaptations. We further propose to use a decision tree classifier to semantically explain the derived clusters in a human-interpretable form. We apply our method to a real, longitudinal movement dataset.

Notes

Acknowledgements

This research was supported by SBB CFF FFS within the SBB Green Class Project, the Swiss National Science Foundation (SNF) within NRP 71 “Managing energy consumption”, and by the Commission for Technology and Innovation (CTI) within the Swiss Competence Center for Energy Research (SCCER) Mobility.

References

  1. Abernethy CL (1986) Performance measurement in canal water management: a discussion. Overseas Development Institute (ODI)Google Scholar
  2. Aggarwal CC, Yu PS (2001) Outlier detection for high dimensional data. In: ACM Sigmod Record, vol 30, pp 37–46. ACMGoogle Scholar
  3. Axhausen KW, Frick M (2005) Nutzungen—Strukturen—Verkehr, pp 61–79. Springer, Berlin, Heidelberg. ISBN 978-3-540-27010-2Google Scholar
  4. Bhaskar A, Chung E et al (2015) Passenger segmentation using smart card data. IEEE Trans Intel Transp Syst 16(3):1537–1548CrossRefGoogle Scholar
  5. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees, CRC pressGoogle Scholar
  6. Bucher D, Cellina F, Mangili F, Raubal M, Rudel R, Rizzoli AE, Elabed O (2016) Exploiting fitness apps for sustainable mobility-challenges deploying the goeco! app. In: ICT for sustainability (ICT4S)Google Scholar
  7. Chen L, Özsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD international conference on management of data, pp 491–502. ACMGoogle Scholar
  8. Chiou J-M, Li P-L (2007) Functional clustering and identifying substructures of longitudinal data. J Royal Statist Soc Series B (Statistical Methodology) 69(4):679–699CrossRefGoogle Scholar
  9. Claramunt C, Thériault M (1995) Managing time in GIS: an event-oriented approach. Recent Adv Temp Databases, 23–42Google Scholar
  10. Ester M, Kriegel H-P, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96:226–231Google Scholar
  11. Garcia-Escudero LA, Gordaliza A (2005) A proposal for robust curve clustering. J Classif 22(2):185–201CrossRefGoogle Scholar
  12. Golledge RG (1997) Spatial behavior: a geographic perspective, Guilford PressGoogle Scholar
  13. Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature 453(7196):779–782CrossRefGoogle Scholar
  14. Gossling S (2017) Ict and transport behaviour: a conceptual review. Int J Sustain Transp (Just-accepted)Google Scholar
  15. Gupta M, Gao J, Aggarwal CC, Han J (2014) Outlier detection for temporal data: a survey. IEEE Trans Knowl Data Eng 26(9):2250–2267CrossRefGoogle Scholar
  16. Hall MA (2000) Correlation-based feature selection of discrete and numeric class machine learningGoogle Scholar
  17. Hartigan JA, Wong MA (1979) Algorithm as 136: a k-means clustering algorithm. J Royal Statis Soc. Series C (Applied Statistics) 28(1):100–108Google Scholar
  18. Heinen E, Ogilvie D (2016) Variability in baseline travel behaviour as a predictor of changes in commuting by active travel, car and public transport: a natural experimental study. J Transp Health 3(1):77–85CrossRefGoogle Scholar
  19. Inselberg A, Dimsdale B (1987) Parallel coordinates for visualizing multi-dimensional geometry. In: Computer graphics 1987, pp 25–44. SpringerGoogle Scholar
  20. Isermann R (2005) Model-based fault-detection and diagnosis-status and applications. Annual Rev Control 29(1):71–85CrossRefGoogle Scholar
  21. Jolliffe P (2016) Introduction. In: Learning, migration and intergenerational relations, pp 1–33. SpringerGoogle Scholar
  22. Jonietz D, Bucher D (2018) Continuous trajectory pattern mining for mobility behaviour change detection. In: Progress in location-based services 2018. SpringerGoogle Scholar
  23. Kim J, Corcoran J, Papamanolis M (2017) Route choice stickiness of public transport passengers: Measuring habitual bus ridership behaviour using smart card data. Transp Res Part C: Emerg Technol 83:146–164CrossRefGoogle Scholar
  24. Langlois GG, Koutsopoulos HN, Zhao J (2016) Inferring patterns in the multi-week activity sequences of public transport users. Transp Res Part C: Emerg Technol 64:1–16CrossRefGoogle Scholar
  25. Lanzendorf M (2003) Mobility biographies. A new perspective for understanding travel behaviour. In: 10th international conference on travel behaviour research, vol 10, p 15Google Scholar
  26. Lee J-G, Han J, Whang K-Y (2007) Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD international conference on management of data, pp 593–604. ACMGoogle Scholar
  27. Ma X, Wu Y-J, Wang Y, Chen F, Liu J (2013) Mining smart card data for transit riders travel patterns. Transp Res Part C: Emerg Technol 36:1–12CrossRefGoogle Scholar
  28. Montini L, Prost S, Schrammel J, Rieser-Schüssler N, Axhausen KW (2015) Comparison of travel diaries generated from smartphone data and dedicated GPS devices. Transp Res Procedia 11:227–241CrossRefGoogle Scholar
  29. Parisot O, Ghoniem M, Otjacques B (2014) Decision trees and data preprocessing to help clustering interpretation. In: DATA, pp 48–55Google Scholar
  30. Pendyala R, Parashar A, Muthyalagari G (2001) Measuring day-to day variability in travel characteristics using GPS data. In: 79th annual meeting of the transportation research boardGoogle Scholar
  31. Rokach L, Maimon O (2005) Decision trees. Data mining and knowledge discovery handbook, pp 165–192Google Scholar
  32. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65Google Scholar
  33. Rousseeuw PJ, Van Zomeren BC (1990) Unmasking multivariate outliers and leverage points. J Amer Statist Assoc 85(411):633–639CrossRefGoogle Scholar
  34. Sander J, Ester M, Kriegel H-P, Xu X (1998) Density-based clustering in spatial databases: the algorithm GDB scan and its applications. Data Mining Knowl Discov 2(2):169–194CrossRefGoogle Scholar
  35. Scheiner J, Holz-Rau C (2013) Changes in travel mode use after residential relocation: a contribution to mobility biographies. Transportation 40(2):431–458CrossRefGoogle Scholar
  36. Schlich R, Axhausen KW (2003) Habitual travel behaviour: evidence from a six-week travel diary. Transportation 30(1):13–36CrossRefGoogle Scholar
  37. Schönfelder S, Axhausen KW (2001) Mobidrive-längsschnitterhebungen zum individuellen verkehrsverhalten: Perspektiven für raum-zeitliche analysenGoogle Scholar
  38. Shen L, Stopher PR (2017) Review of GPS travel survey and GPS data-processing methods. Transport reviews, 0(0):1–19. ISSN 0144-1647.  https://doi.org/10.1080/01441647.2014.903530
  39. Singer JD, Willett JB (2003) Applied longitudinal data analysis: modeling change and event occurrence, Oxford university pressGoogle Scholar
  40. Song C, Qu Z, Blumm N, Barabási A-L (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021CrossRefGoogle Scholar
  41. Stopher PR, Moutou CJ, Liu W (2013) Sustainability of voluntary travel behaviour change initiatives: a 5-year studyGoogle Scholar
  42. Van der Waerden P (2003) The influence of key events and critical incidents on transport mode choice switching behaviour: a descriptive analysis. In: Proceedings of 10th international conference on travel behaviour research, 2003Google Scholar
  43. Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN (2003) A review of process fault detection and diagnosis: part i: quantitative model-based methods. Comput Chem Eng 27(3):293–311CrossRefGoogle Scholar
  44. Weiser P, Scheider S, Bucher D, Kiefer P, Raubal M (2016) Towards sustainable mobility behavior: research challenges for location-aware information and communication technology. GeoInformatica 20(2):213–239CrossRefGoogle Scholar
  45. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678CrossRefGoogle Scholar
  46. Yuan Y, Raubal M (2012) Extracting dynamic urban mobility patterns from mobile phone data. In: GIScience, vol 7478, pp 354–367. SpringerGoogle Scholar
  47. Yuan Y, Raubal M (2016) Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study. Int J Geogr Inf Sci 30(8):1594–1621CrossRefGoogle Scholar
  48. Zaki MJ, Meira W Jr, Meira W (2014) Data mining and analysis: fundamental concepts and algorithms. Cambridge University PressGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David Jonietz
    • 1
  • Dominik Bucher
    • 1
  • Henry Martin
    • 1
  • Martin Raubal
    • 1
  1. 1.Institute of Cartography and Geoinformation, ETH ZurichZürichSwitzerland

Personalised recommendations