A Top-Down Algorithm with Free Distance Parameter for Mining Top-k Flock Patterns

Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Spatiotemporal data is becoming more and more available due to the increase in the using of location-based systems. With such data, important information can be retrieved, where co-movement patterns stand out in finding groups of moving objects moving together. However, such pattern mining algorithms are not simple and commonly require non-trivial fixed parameters as input, which are extremely dependent on the data domain and also impacted by many others context variables, being such challenging task also to domain specialists. One example of these patterns is the flock pattern that has as its most challenging parameter the distance threshold that is the size of the disks that involves the objects. Although other density-based approaches reduce the impact of the restrictions of the disk, all of them still require a distance parameter for the density connectedness. Addressing this problem, we introduce the concept of discovering of k-co-movement patterns, which is finding the top-k patterns, according to the desired raking criterion. Especially for the flock pattern, we also define a new flock pattern query and propose a top-down algorithm with free distance parameter for the aforementioned problem.


Flock pattern Flock discovery Top-k flocks Free diameter parameter Top-down algorithm Co-movement patterns 



This work has been supported by the Brazilian Funding Agencies CAPES and CNPq.


  1. Arimura H, Takagi T, Geng X, Uno T (2014) Finding all maximal duration flock patterns in high-dimensional trajectories, Hokkaido UniversityGoogle Scholar
  2. Benkert M, Gudmundsson J, Hübner F, Wolle T (2008) Reporting flock patterns. Comput Geom 41(3):111–125CrossRefGoogle Scholar
  3. Bogorny V, Renso C, Aquino AR, Lucca Siqueira F, Alvares LO (2014) Constant-a conceptual data model for semantic trajectories of moving objects. Trans GIS 18(1):66–88CrossRefGoogle Scholar
  4. Cao Y, Zhu J, Gao F (2016) An algorithm for mining moving flock patterns from pedestrian trajectories. In: APWeb, pp 310–321Google Scholar
  5. Ester M, Kriegel H-P, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: SIGKDD, pp 226–231Google Scholar
  6. Feng Z, Zhu Y (2016) A survey on trajectory data mining: techniques and applications. IEEE Access 4:2056–2067CrossRefGoogle Scholar
  7. Furtado AS, Alvares LOC, Pelekis N, Theodoridis Y, Bogorny V (2018) Unveiling movement uncertainty for robust trajectory similarity analysis. Int J Geogr Inf Sci 32(1):140–168CrossRefGoogle Scholar
  8. Geng X, Takagi T, Arimura H, Uno T (2014) Enumeration of complete set of flock patterns in trajectories. In: SIGSPATIAL IWGS, pp 53–61Google Scholar
  9. Gudmundsson J, van Kreveld M (2006) Computing longest duration flocks in trajectory data. In: GIS, pp 35–42Google Scholar
  10. Jeung H, Shen HT, Zhou X (2008a) Convoy queries in spatio-temporal databases. In: ICDE, pp 1457–1459Google Scholar
  11. Jeung H, Yiu ML, Zhou X, Jensen CS, Shen HT (2008b) Discovery of convoys in trajectory databases. PVLDB 1(1):1068–1080Google Scholar
  12. Kalnis P, Mamoulis N, Bakiras S (2005) On discovering moving clusters in spatio-temporal data. SSTD 3633:364–381Google Scholar
  13. Li X, Ceikute V, Jensen CS, Tan K-L (2013) Effective online group discovery in trajectory databases. IEEE TKDE 25(12):2752–2766Google Scholar
  14. Li Y, Bailey J, Kulik L (2015) Efficient mining of platoon patterns in trajectory databases. D&KE 100:167–187Google Scholar
  15. Li Z, Ding B, Han J, Kays R (2010a) Swarm: mining relaxed temporal moving object clusters. PVLDB 3(1–2):723–734Google Scholar
  16. Li Z, Ji M, Lee J-G, Tang L-A, Yu Y, Han J, Kays R (2010b) Movemine: mining moving object databases. In: SIGMOD, pp 1203–1206Google Scholar
  17. Ong R, Nanni M, Renso C, Wachowicz M, Pedreschi D (2013) Parameter estimation and pattern validation in flock mining. In: Int’l workshop on new frontiers in mining complex patterns, pp 3–17Google Scholar
  18. Parent C, Spaccapietra S, Renso C, Andrienko G, Andrienko N, Bogorny V, Damiani ML, Gkoulalas-Divanis A, Macedo J, Pelekis N et al (2013) Semantic trajectories modeling and analysis. CSUR 45(4):42Google Scholar
  19. Piorkowski M, Sarafijanovoc-Djukic N, Grossglauser M (2009) CRAWDAD dataset epfl/mobility (v. 2009-02-24).,
  20. Silva JA, Faria ER, Barros RC, Hruschka ER, de Carvalho AC, Gama J (2013) Data stream clustering: a survey. CSUR 46(1):13CrossRefGoogle Scholar
  21. Spaccapietra S, Parent C, Damiani ML, de Macedo JA, Porto F, Vangenot C (2008) A conceptual view on trajectories. D&KE 65(1):126–146Google Scholar
  22. Tanaka PS, Vieira MR, Kaster DS (2016) An improved base algorithm for online discovery of flock patterns in trajectories. JIDM 7(1):52–67Google Scholar
  23. Vieira MR, Bakalov P, Tsotras VJ (2009) On-line discovery of flock patterns in spatio-temporal data. In: GIS, pp 286–295Google Scholar
  24. Wachowicz M, Ong R, Renso C, Nanni M (2011) Finding moving flock patterns among pedestrians through collective coherence. IJGIS 25(11):1849–1864Google Scholar
  25. Wang Y, Lim E-P, Hwang S-Y (2003) On mining group patterns of mobile users. DEXA 2736:287–296Google Scholar
  26. Wang Y, Lim E-P, Hwang S-Y (2006) Efficient mining of group patterns from user movement data. D&KE 57(3):240–282Google Scholar
  27. Zheng Y (2015) Trajectory data mining: an overview. ACM (TIST) 6(3):29Google Scholar
  28. Zheng Y, Li Q, Chen Y, Xie X, Ma W-Y (2008) Understanding mobility based on GPS data. In: Proceedings Int’l Conference on Ubiquitous Computing, pp 312–321Google Scholar
  29. Zheng Y, Xie X, Ma W-Y (2010) Geolife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng Bull 33(2):32–39Google Scholar
  30. Zheng Y, Zhang L, Xie X, Ma W-Y (2009) Mining interesting locations and travel sequences from GPS trajectories. In: WWW, pp 791–800Google Scholar
  31. Zheng Y, Zhou X (2011) Computing with spatial trajectories, Springer Science & Business MediaGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ComputingUniversity of LondrinaLondrinaBrazil
  2. 2.Department of Informatics and StatisticsFederal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Hitachi America Ltd, R&DSanta ClaraUSA

Personalised recommendations