Skip to main content

Modelling Stable Backward Diffusion and Repulsive Swarms with Convex Energies and Range Constraints

Part of the Lecture Notes in Computer Science book series (LNIP,volume 10746)

Abstract

Backward diffusion and purely repulsive swarm dynamics are generally feared as ill-posed, highly unstable processes. On the other hand, it is well-known that minimising strictly convex energy functionals by gradient descent creates well-posed, stable evolutions. We prove a result that appears counterintuitive at first glance: We derive a class of one-dimensional backward evolutions from the minimisation of strictly convex energies. Moreover, we stabilise these inverse evolutions by imposing range constraints. This allows us to establish a comprehensive theory for the time-continuous evolution, and to prove a stability condition for an explicit time discretisation. Prototypical experiments confirm this stability and demonstrate that our model is useful for global contrast enhancement in digital greyscale images and for modelling purely repulsive swarm dynamics.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bergerhoff, L., Weickert, J.: Modelling image processing with discrete first-order swarms. In: Pillay, N., Engelbrecht, A.P., Abraham, A., du Plessis, M.C., Snášel, V., Muda, A.K. (eds.) Advances in Nature and Biologically Inspired Computing. AISC, vol. 419, pp. 261–270. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27400-3_23

    Chapter  Google Scholar 

  2. Carrillo, J.A., Fornasier, M., Toscani, G., Vecil, F.: Particle, kinetic, and hydrodynamic models of swarming. In: Naldi, G., Pareschi, L., Toscani, G. (eds.) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, pp. 297–336. Birkhäuser, Boston (2010)

    Chapter  Google Scholar 

  3. Gilboa, G., Sochen, N.A., Zeevi, Y.Y.: Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Trans. Image Process. 11(7), 689–703 (2002)

    Article  Google Scholar 

  4. Osher, S., Rudin, L.: Shocks and other nonlinear filtering applied to image processing. In: Tescher, A.G. (ed.) Proceedings of SPIE Applications of Digital Image Processing XIV, vol. 1567, pp. 414–431. SPIE Press, Bellingham (1991)

    Google Scholar 

  5. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  6. Sapiro, G., Caselles, V.: Histogram modification via differential equations. J. Differ. Eqn. 135, 238–268 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sochen, N.A., Zeevi, Y.Y.: Resolution enhancement of colored images by inverse diffusion processes. In: Proceeding of 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2853–2856, Seattle, WA (May 1998)

    Google Scholar 

  8. Welk, M., Weickert, J.: An efficient and stable two-pixel scheme for 2D forward-and-backward diffusion. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 94–106. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_8

    Chapter  Google Scholar 

Download references

Acknowledgement

Our research activities have been supported financially by the Deutsche Forschungsgemeinschaft (DFG) through a Gottfried Wilhelm Leibniz Prize for Joachim Weickert. This is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Bergerhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bergerhoff, L., Cardénas, M., Weickert, J., Welk, M. (2018). Modelling Stable Backward Diffusion and Repulsive Swarms with Convex Energies and Range Constraints. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics