Abada, L., Aouat, S.: Tabu search to solve the shape from shading ambiguity. Int. J. Artif. Intell. Tools 24(5) (2015)
Google Scholar
Abada, L., Aouat, S.: Improved shape from shading without initial information. Front. Comput. Sci. 11(2), 320–331 (2017)
CrossRef
Google Scholar
Bollobás, B.: Modern Graph Theory. Graduate Texts in Mathematics, vol. 184. Springer, Heidelberg (1998). https://doi.org/10.1007/978-1-4612-0619-4
MATH
Google Scholar
Bruss, A.R.: The eikonal equation: some results applicable to computer vision. J. Math. Phys. 23(5), 890–896 (1982)
MathSciNet
CrossRef
MATH
Google Scholar
Bruss, A.R.: Is what you see what you get? In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1053–1056, August 1983
Google Scholar
Chang, J.Y., Lee, K.M., Lee, S.U.: Shape from shading using graph cuts. Pattern Recogn. 41(12), 3749–3757 (2008)
CrossRef
MATH
Google Scholar
Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-662-53622-3
MATH
Google Scholar
Durou, J.D., Piau, D.: Ambiguous shape from shading with critical points. J. Math. Imaging Vis. 12(2), 99–108 (2000)
MathSciNet
CrossRef
MATH
Google Scholar
Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)
CrossRef
Google Scholar
Horn, B.K.P.: Shape from shading: a method for obtaining the shape of a smooth opaque object from one view. Ph.D. thesis, Massachusetts Institute of Technology (1970)
Google Scholar
Horn, B.K.P., Brooks, M.J. (eds.): Shape from Shading. MIT Press, Cambridge (1989)
Google Scholar
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)
CrossRef
Google Scholar
Kimmel, R., Bruckstein, A.M.: Global shape from shading. Comput. Vis. Image Underst. 62(3), 360–369 (1995)
CrossRef
Google Scholar
Köhler, E.: Recognizing graphs without asteroidal triples. J. Discret. Algorithms 2(4), 439–452 (2004)
MathSciNet
CrossRef
MATH
Google Scholar
Oliensis, J.: Uniqueness in shape from shading. Int. J. Comput. Vis. 6(2), 75–104 (1991)
CrossRef
MATH
Google Scholar
Prados, E., Soatto, S.: Fast marching method for generic shape from shading. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 320–331. Springer, Heidelberg (2005). https://doi.org/10.1007/11567646_27
CrossRef
Google Scholar
Quéau, Y., Durou, J.-D.: Edge-preserving integration of a normal field: weighted least-squares, TV and \(L^1\) approaches. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 576–588. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18461-6_46
Google Scholar
Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1999)
MATH
Google Scholar
Zhu, Q., Shi, J.: Shape from shading: recognizing the mountains through a global view. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1839–1846. IEEE, New York (2006)
Google Scholar