Skip to main content

Superpixels Optimized by Color and Shape

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10746))


Image over-segmentation is formalized as the approximation problem when a large image is segmented into a small number of connected superpixels with best fitting colors. The approximation quality is measured by the energy whose main term is the sum of squared color deviations over all pixels and a regularizer encourages round shapes. The first novelty is the coarse initialization of a non-uniform superpixel mesh based on selecting most persistent edge segments. The second novelty is the scale-invariant regularizer based on the isoperimetric quotient. The third novelty is the improved coarse-to-fine optimization where local moves are organized according to their energy improvements. The algorithm beats the state-of-the-art on the objective reconstruction error and performs similarly to other superpixels on the benchmarks of BSD500.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to the state-of-the-art. Trans. PAMI 34, 2274–2282 (2012)

    Article  Google Scholar 

  2. Van de Bergh, M., Boix, X., Roig, G., Van Gool, L.: SEEDS: superpixels extracted via energy-driven sampling. Int. J. Comput. Vis. 111, 298–314 (2015)

    Article  MathSciNet  Google Scholar 

  3. Yao, J., Boben, M., Fidler, S., Urtasun, R.: Real-time coarse-to-fine topologically preserving segmentation. In: Proceedings of CVPR, pp. 216–225 (2015)

    Google Scholar 

  4. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmenetaton. Trans. PAMI 33, 898–916 (2011)

    Article  Google Scholar 

  5. Stutz, D., Hermans, A., Leibe, B.: Superpixels: an evaluation of the state-of-the-art. Comput. Vis. Image Underst. 166, 1–27 (2017)

    Article  Google Scholar 

  6. Shi, J., Malik, J.: Normalized cuts and image segmentation. Trans. PAMI 22, 888–905 (2000)

    Article  Google Scholar 

  7. Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel segmentation. In: Proceedings of CVPR, pp. 2097–2104 (2011)

    Google Scholar 

  8. Conrad, C., Mertz, M., Mester, R.: Contour-relaxed superpixels. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.C. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition. LNCS, vol. 8081, pp. 280–293. Springer, Heidelberg (2013).

    Chapter  Google Scholar 

  9. Duan, L., Lafarge, F.: Image partitioning into convex polygons. In: Proceedings of CVPR, pp. 3119–3127 (2015)

    Google Scholar 

  10. Forsythe, J., Kurlin, V., Fitzgibbon, A.: Resolution-independent superpixels based on convex constrained meshes without small angles. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 223–233. Springer, Cham (2016).

    Google Scholar 

  11. Chernov, A., Kurlin, V.: Reconstructing persistent graph structures from noisy images. Image-A 3, 19–22 (2013)

    Google Scholar 

  12. Kurlin, V.: Auto-completion of contours in sketches, maps and sparse 2D images based on topological persistence. In: Proceedings of CTIC, pp. 594–601 (2014)

    Google Scholar 

  13. Kurlin, V.: A fast persistence-based segmentation of noisy 2D clouds with provable guarantees. Pattern Recogn. Lett. 83, 3–12 (2016)

    Article  Google Scholar 

  14. Kurlin, V.: A one-dimensional homologically persistent skeleton of a point cloud in any metric space. Comput. Graph. Forum 34, 253–262 (2015)

    Article  Google Scholar 

  15. Kurlin, V.: A homologically persistent skeleton is a fast and robust descriptor of interest points in 2D images. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9256, pp. 606–617. Springer, Cham (2015).

    Chapter  Google Scholar 

  16. Kurlin, V.: A fast and robust algorithm to count topologically persistent holes in noisy clouds. In: Proceedings of CVPR, pp. 1458–1463 (2014)

    Google Scholar 

  17. Schick, A., Fischer, M., Stifelhagen, R.: Measuring and evaluating the compactness of superpixels. In: Proceedings of ICPR, pp. 930–934 (2012)

    Google Scholar 

  18. Neubert, P., Protzel, P.: Compact watershed and preemptive SLIC: on improving trade-offs of superpixel segmentation algorithms. In: proceedings of the ICPR, pp. 996–1001 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Vitaliy Kurlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kurlin, V., Harvey, D. (2018). Superpixels Optimized by Color and Shape. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics