Abstract
The integration of feature matches for handling large displacements is one of the key concepts of recent variational optical flow methods. In this context, many existing approaches rely on confidence measures to identify locations where a poor initial match can potentially be improved by adaptively integrating flow proposals. One very intuitive confidence measure to identify such locations is the matching cost of the data term. Problems arise, however, in the presence of illumination changes, since brightness constancy does not hold and invariant constancy assumptions typically discard too much information for an identification of poor matches. In this paper, we suggest a pipeline approach that addresses the aforementioned problem in two ways. First, we propose a novel confidence measure based on the illumination-compensated brightness constancy assumption. By estimating illumination changes from a pre-computed flow this measure allows us to reliably identify poor matches even in the presence of varying illumination. Secondly, in contrast to many existing pipeline approaches, we propose to integrate only feature matches that have been obtained from dense variational methods. This in turn not only provides robust matches due to the inherent regularization, it also demonstrates that in many cases sparse descriptor matches are not needed for large displacement optical flow. Experiments on the Sintel benchmark and on common large displacement sequences demonstrate the benefits of our strategy. They show a clear improvement over the baseline method and a comparable performance as similar methods from the literature based on sparse feature matches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alvarez, L., EsclarĂn, J., LefĂ©bure, M., SĂ¡nchez, J.: A PDE model for computing the optical flow. In: Proceedings of Congreso de Ecuaciones Diferenciales y Aplicaciones, pp. 1349–1356 (1999)
Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2010)
Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized PatchMatch correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 29–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_3
Berg, A., Malik, J.: Geometric blur for template matching. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 607–614 (2001)
Black, M.J., Anandan, P.: Robust dynamic motion estimation over time. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 292–302 (1991)
Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3
Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)
Bruhn, A., Weickert, J.: A confidence measure for variational optic flow methods. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties from Incomplete Data, Computational Imaging and Vision, vol. 31, pp. 283–297. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-3858-8_15
Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proceedings of IEEE International Conference on Image Processing, pp. 168–172 (1994)
Chen, Z., Jin, H., Lin, Z., Cohen, S., Wu, Y.: Large displacement optical flow from nearest neighbor fields. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2443–2450 (2013)
Dalal, N., Triggs, B.: Histogram of oriented gradients for human detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)
Demetz, O., Stoll, M., Volz, S., Weickert, J., Bruhn, A.: Learning brightness transfer functions for the joint recovery of illumination changes and optical flow. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 455–471. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_30
Drayer, B., Brox, T.: Combinatorial regularization of descriptor matching for optical flow estimation. In: Proceedings of British Machine Vision Conference, pp. 42.1–42.12 (2015)
Förstner, W., GĂ¼lch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proceedings of ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, pp. 281–305 (1987)
Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
Lempitsky, V., Roth, S., Rother, C.: FusionFlow: discrete-continuous optimization for optical flow estimation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
Lowe, D., Bruckstein, A.M., Kimmel, R.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: SIFT flow: dense correspondence across different scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 28–42. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_3
Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8, 565–593 (1986)
Nir, T., Bruckstein, A.M., Kimmel, R.: Over-parameterized variational optical flow. Int. J. Comput. Vis. 76(2), 205–216 (2008)
Rashwan, H.A., Mohamed, M.A., GarcĂa, M.A., Mertsching, B., Puig, D.: Illumination robust optical flow model based on histogram of oriented gradients. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 354–363. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40602-7_38
Sevilla-Lara, L., Sun, D., Learned-Miller, E.G., Black, M.J.: Optical flow estimation with channel constancy. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 423–438. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_28
Stoll, M., Volz, S., Bruhn, A.: Variational large displacement optical flow without feature matches. In: Pelillo, M., Hancock, E. (eds.) EMMCVPR 2017. LNCS, vol. 10746, pp. 79–92. Springer, Cham (2017)
Stoll, M., Volz, S., Bruhn, A.: Adaptive integration of feature matches into variational optical flow methods. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 1–14. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37431-9_1
Stoll, M., Volz, S., Maurer, D., Bruhn, A.: A time-efficient optimisation framework for parameters of optical flow methods. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10269, pp. 41–53. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59126-1_4
Tu, Z., Poppe, R., Veltkamp, R.C.: Weighted local intensity fusion method for variational optical flow estimation. Pattern Recogn. 50, 223–232 (2016)
Volz, S., Bruhn, A., Valgaerts, L., Zimmer, H.: Modeling temporal coherence for optical flow. In: Proceedings of International Conference on Computer Vision, pp. 1116–1123 (2011)
Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE-based computation of image motion. Int. J. Comput. Vis. 45(3), 245–264 (2001)
Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. In: Proceedings of International Conference on Computer Vision, pp. 1385–1392 (2013)
Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1744–1757 (2012)
Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosenhahn, B., Seidel, H.-P.: Complementary optic flow. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 207–220. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03641-5_16
Acknowledgements
We thank the German Research Foundation (DFG) for financial support within project B04 of SFB/Transregio 161.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Stoll, M., Maurer, D., Volz, S., Bruhn, A. (2018). Illumination-Aware Large Displacement Optical Flow. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-78199-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78198-3
Online ISBN: 978-3-319-78199-0
eBook Packages: Computer ScienceComputer Science (R0)