Skip to main content

Mitochondrial RNA Editing and Processing in Diplonemid Protists

  • Chapter
  • First Online:
RNA Metabolism in Mitochondria

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 34))

Abstract

RNA editing and processing in the mitochondrion of Diplonema papillatum and other diplonemids are arguably the most complex processes of their kind described in any organelle so far. Prior to translation, each transcript has to be accurately trans-spliced from gene fragments encoded on different circular chromosomes. About half of the transcripts are massively edited by several types of substitution editing and addition of blocks of uridines. Comparative analysis of mitochondrial RNA processing among the three euglenozoan groups, diplonemids, kinetoplastids, and euglenids, highlights major differences between these lineages. Diplonemids remain poorly studied, yet they were recently shown to be extremely diverse and abundant in the ocean and hence are rapidly attracting increasing attention. It is therefore important to turn them into genetically tractable organisms, and we report here that they indeed have the potential to become such.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abad MG, Long Y, Willcox A, Gott JM, Gray MW, Jackman JE (2011) A role for tRNA(his) guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5′-tRNA editing. RNA 17:613–623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Adler BK, Harris ME, Bertrand KI, Hajduk SL (1991) Modification of Trypanosoma brucei mitochondrial rRNA by posttranscriptional 3′ polyuridine tail formation. Mol Cell Biol 11:5878–5884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alfonzo JD, Söll D (2009) Mitochondrial tRNA import—the challenge to understand has just begun. Biol Chem 390:717–722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alfonzo JD, Thiemann O, Simpson L (1997) The mechanism of U insertion/deletion RNA editing in kinetoplastid mitochondria. Nucleic Acids Res 25:3571–3579

    Article  Google Scholar 

  • Ammerman ML, Downey KM, Hashimi H, Fisk JC, Tomasello DL, Faktorová D, Kafková L, King T, Lukeš J, Read LR (2012) Architecture of the trypanosome RNA editing accessory complex, MRB1. Nucleic Acids Res 40:5637–5650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aphasizhev R, Aphasizheva I (2011) Uridine insertion/deletion editing in trypanosomes: a playground for RNA-guided information transfer. WIREs 2:669–685

    Article  CAS  Google Scholar 

  • Ban T, Zhu JK, Melcher K, Xu HE (2015) Structural mechanisms of RNA recognition: sequence-specific and non-specific RNA-binding proteins and the Cas9-RNA-DNA complex. Cell Mol Life Sci 72:1045–1058

    Article  PubMed  CAS  Google Scholar 

  • Benne R, van den Burg J, Brakenhoff JP, Sloof P, van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826

    Article  PubMed  CAS  Google Scholar 

  • Breglia SA, Yubuki N, Hoppenrath M, Leander BS (2010) Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospites bacati n. Gen. Et sp. (Symbiontida). BMC Microbiol 10:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bundschuh R, Altmüller J, Becker C, Nürnberg P, Gott JM (2011) Complete characterization of the edited transcriptome of the mitochondrion of Physarum polycephalum using deep sequencing of RNA. Nucleic Acids Res 39:6044–6055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Gray MW, Forget L, Lang BF (2013) Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol 5:418–438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burger G, Moreira S, Valach M (2016) Genes in hiding. Trends Genet 32:553–565

    Article  PubMed  CAS  Google Scholar 

  • Calvo SE, Clauser KR, Mootha VK (2016) MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44:D1251–D1257

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2016) Higher classification and phylogeny of Euglenozoa. Eur J Protistol 56:250–276

    Article  PubMed  Google Scholar 

  • Chaput H, Wang Y, Morse D (2002) Polyadenylated transcripts containing random gene fragments are expressed in dinoflagellate mitochondria. Protist 153:111–122

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Frankhouser D, Bundschuh R (2012) Comparison of insertional RNA editing in Myxomycetes. PLoS Comput Biol 8:e1002400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury J-M, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horák A, Jaillon O, Lima Mendez G, Lukeš J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Acinas SG, Bork P, Bowler C, Gaill F, Gorsky G, Grimsley N, Hingcamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki M, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E, Boss E, Follows M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sullivan MB, Velayoudon D (2015) Eukaryotic plankton diversity in the sunlit global ocean. Science 348:1261605

    Article  PubMed  CAS  Google Scholar 

  • Dejung M, Subota I, Bucerius F, Dindar G, Freiwald A, Engstler M, Boshart M, Butter F, Janzen CJ (2016) Quantitative proteomics uncovers novel factors involved in developmental differentiation of Trypanosoma brucei. PLoS Pathog 12:e1005439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S (2011) On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol 162:53–70

    Article  PubMed  CAS  Google Scholar 

  • Dixit S, Müller-McNicoll M, David V, Zarnack K, Ule J, Hashimi H, Lukeš J (2017) Differential binding of mitochondrial transcripts by MRB8170 and MRB4160 regulates distinct editing fates of mitochondrial mRNA in trypanosomes. MBio 8:e02288-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobáková E, Flegontov P, Skalický T, Lukeš J (2015) Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis. Genome Biol Evol 7:3358–3367

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgcomb VP, Breglia SA, Yubuki N, Beaudoin D, Patterson DJ, Leander BS, Bernhard JM (2011) Identity of epibiotic bacteria on symbiontid euglenozoans in O2-depleted marine sediments: evidence for symbiont and host co-evolution. ISME J 5:231–243

    Article  PubMed  CAS  Google Scholar 

  • Eloe EA, Shulse CN, Fadrosh DW, Williamson SJ, Allen EE, Bartlett DH (2011) Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ Microbiol Rep 3:449–458

    Article  PubMed  Google Scholar 

  • El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Hass BJ, Tran A-N, Wortman JR, Alsmark UCM, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsoon D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall N (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404–409

    Article  PubMed  CAS  Google Scholar 

  • Faktorová D, Dobáková E, Peña-Diaz P, Lukeš J (2016) From simple to supercomplex: mitochondrial genomes of euglenozoan protists. F1000 Res 5:392

    Article  CAS  Google Scholar 

  • Flegontov P, Gray MW, Burger G, Lukeš J (2011) Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa? Curr Genet 57:225–232

    Article  PubMed  CAS  Google Scholar 

  • Flegontov P, Michálek J, Janouškovec J, Lai D-H, Jirků M, Hajdušková E, Tomčala A, Otto TD, Keeling PJ, Pain A, Oborník M, Lukeš J (2015) Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol 32:1115–1131

    Article  PubMed  CAS  Google Scholar 

  • Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, Bowler C, Lukeš J, Horák A (2016) Unexpected diversity and abundance of planktonic diplonemids in the world ocean. Curr Biol 26:3060–3065

    Article  PubMed  CAS  Google Scholar 

  • Fu C-J, Sheikh S, Miao W, Andersson SGE, Baldauf SL (2014) Missing genes, multiple ORFs, and C-to-U type RNA editing in Acrasis kona (Heterolobosea, Discoba) mitochondrial DNA. Genome Biol Evol 6:2240–2257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gawryluk RMR, Chisholm KA, Pinto DM, Gray MW (2014) Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteome 109:400–416

    Article  CAS  Google Scholar 

  • Gawryluk RMR, del Campo J, Okamoto N, Strassert JFH, Lukeš J, Richards TA, Worden AZ, Santoro AE, Keeling PJ (2016) Morphological identification and single-cell genomics of marine diplonemids. Curr Biol 26:3053–3059

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez TN, Sidrauski C, Dörfler S, Walter P (1999) Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J 18:3119–3132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Göringer HU (2012) ‘Gestalt,’ composition and function of the Trypanosoma brucei editosome. Annu Rev Microbiol 66:65–82

    Article  PubMed  CAS  Google Scholar 

  • Gott JM, Parimi N, Bundschuh R (2005) Discovery of new genes and deletion editing in Physarum mitochondria enabled by a novel algorithm for finding edited mRNAs. Nucleic Acids Res 33:5063–5072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gray MW (2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4:a011403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hudson AJ, Stark MR, Fast NM, Russell AG, Rader SD (2015) Splicing diversity revealed by reduced spliceosomes in C. merolae and other organisms. RNA Biol 12:1–8

    Article  PubMed  Google Scholar 

  • Jackman JE, Gott JM, Gray MW (2012) Doing it in reverse: 3′-to-5′ polymerization by the Thg1 superfamily. RNA 18:886–899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson CJ, Waller RF (2013) A widespread and unusual RNA trans-splicing type in dinoflagellate mitochondria. PLoS One 8:e56777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson CJ, Norman JE, Schnare MN, Gray MW, Keeling PJ, Waller RF (2007) Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria. BMC Biol 5:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P, Hroudová M, Doležal P, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Vlček Č, Hampl V (2016) A eukaryote without a mitochondrial organelle. Curr Biol 26:1274–1284

    Article  PubMed  CAS  Google Scholar 

  • Kaur B, Valach M, Peña-Diaz P, Moreira S, Keeling PJ, Burger G, Lukeš J, Faktorová D (2018) Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa). Environ Microbiol 20:1030–1040

    Article  PubMed  CAS  Google Scholar 

  • Kiethega GN, Turcotte M, Burger G (2011) Evolutionary conserved cox1 trans-splicing without cis-motifs. Mol Biol Evol 28:2425–2458

    Article  PubMed  CAS  Google Scholar 

  • Kiethega GN, Yan Y, Turcotte M, Burger G (2013) RNA-level unscrambling of fragmented genes in Diplonema mitochondria. RNA Biol 10:301–313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knoop V (2010) When you can’t trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 68:567–586

    Article  PubMed  CAS  Google Scholar 

  • Kuai L, Fang F, Butler JS, Sherman F (2004) Polyadenylation of rRNA in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101:8581–8586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laforest MJ, Roewer I, Lang BF (1997) Mitochondrial tRNAs in the lower fungus Spizellomyces punctatus: tRNA editing and UAG ‘stop’ codons recognized as leucine. Nucleic Acids Res 25:626–632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lara E, Moreira D, Vereshchaka A, López-García P (2009) Panoceanic distribution of new highly diverse clades of deep-sea diplonemids. Environ Microbiol 11:47–55

    Article  PubMed  CAS  Google Scholar 

  • Lavrov DV, Adamski M, Chevaldonné P, Adamska M (2016) Extensive mitochondrial mRNA editing and unusual mitochondrial genome organization in calcaronean sponges. Curr Biol 26:86–92

    Article  PubMed  CAS  Google Scholar 

  • Leander BS, Triemer RE, Farmer MA (2001) Character evolution in heterotrophic euglenids. Eur J Protistol 37:337–356

    Article  Google Scholar 

  • Lee WJ, Simpson AGB (2014) Morphological and molecular characterisation of Notosolenus urceolatus Larsen and Patterson 1990, a member of an understudied deepbranching euglenid group (petalomonads). J Eukaryot Microbiol 61:463–479

    Article  PubMed  CAS  Google Scholar 

  • Leigh J, Lang BF (2004) Mitochondrial 3′ tRNA editing in the jakobid Seculamonas ecuadoriensis: a novel mechanism and implications for tRNA processing. RNA 10:615–621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, Regev A (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7:709–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin S, Zhang H, Spencer DF, Norman JE, Gray MW (2002) Widespread and extensive editing of mitochondrial mRNAs in dinoflagellates. J Mol Biol 320:727–739

    Article  PubMed  CAS  Google Scholar 

  • Lithgow T, Schneider A (2010) Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc B Sci 365:799–817

    Article  CAS  Google Scholar 

  • López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  • López-García P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554

    Article  PubMed  CAS  Google Scholar 

  • Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW (2011) How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63:528–537

    Article  PubMed  CAS  Google Scholar 

  • Lukeš J, Flegontova O, Horák A (2015) Diplonemids. Curr Biol 25:R702–R704

    Article  PubMed  CAS  Google Scholar 

  • Maguire F, Richards TA (2014) Organelle evolution: a mosaic of ‘mitochondrial’ functions. Curr Biol 24:R518–R520

    Article  PubMed  CAS  Google Scholar 

  • Mahendran R, Spottswood MR, Miller DL (1991) RNA editing by cytidine insertion in mitochondria of Physarum polycephalum. Nature 349:434–438

    Article  PubMed  CAS  Google Scholar 

  • Manna S (2015) An overview of pentatricopeptide repeat proteins and their applications. Biochimie 113:93–99

    Article  PubMed  CAS  Google Scholar 

  • Marande W, Burger G (2007) Mitochondrial DNA as a genomic jigsaw puzzle. Science 318:415

    Article  PubMed  CAS  Google Scholar 

  • Marande W, Lukeš J, Burger G (2005) Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryot Cell 4:1137–1146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maslov DA, Yasuhira S, Simpson L (1999) Phylogenetic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences. Protist 150:33–42

    Article  PubMed  CAS  Google Scholar 

  • Mohanty BK, Kushner SR (2011) Bacterial/archaeal/organellar polyadenylation. WIREs 2:256–276

    Article  CAS  Google Scholar 

  • Moreira S, Breton S, Burger G (2012) Unscrambling of genetic information at the RNA level. WIREs 3:213–228

    Article  CAS  Google Scholar 

  • Moreira S, Valach M, Aoulad-Aissa M, Otto C, Burger G (2016) Novel modes of RNA editing in mitochondria. Nucleic Acids Res 44:4907–4919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishikura K (2016) A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 17:83–96

    Article  PubMed  CAS  Google Scholar 

  • Okamoto N, Gawryluk RMR, del Campo J, Strassert JFH, Lukeš J, Richards TA, Worden AZ, Santoro AE, Keeling PJ (2018) Eupelagonema oceanica n. gen. & sp. and a revised diplonemid taxonomy. J Eukaryot Microbiol (in press)

    Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Article  PubMed  CAS  Google Scholar 

  • Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37:e123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, Bowser SS, Čepička I, Decelle J, Dunthorn M, Fiore-Donno A-M, Gile HG, Holzmann M, Jahn R, Jirků M, Keeling PJ, Kostka M, Kudryavtsev A, Lara E, Lukeš J, Mann GD, Mitchell ADE, Nitsche F, Romeralo M, Saunders WG, Simpson AGB, Smirnov VA, Spouge J, Stern FR, Stoeck T, Zimmermann J, Schindel D, de Vargas C (2012) CBOL Protist working group: barcoding eukaryotic richness beyond the animal, plant and fungal kingdoms. PLoS Biol 10:e1001419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Popow J, Schleiffer A, Martinez J (2012) Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 69:2657–2670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rammelt C, Rossmanith W (2016) Repairing tRNA termini: news from the 3′ end. RNA Biol 13:1182–1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Read LK, Lukeš J, Hashimi H (2016) Trypanosome RNA editing: the complexity of getting U in and taking U out. WIREs 7:33–51

    Article  CAS  Google Scholar 

  • Roy J, Faktorová D, Lukeš J, Burger G (2007) Unusual mitochondrial genome structures throughout the Euglenozoa. Protist 158:385–396

    Article  PubMed  CAS  Google Scholar 

  • Rubio MAT, Pastar I, Gaston KW, Ragone FL, Janzen CJ, Cross GAM, Papavasiliou FN, Alfonzo JD (2007) An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci U S A 104:7821–7826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rüdinger M, Fritz-Laylin L, Polsakiewicz M, Knoop V (2011) Plant-type mitochondrial RNA editing in the protist Naegleria gruberi. RNA 17:2058–2062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salone V, Rüdinger M, Polsakiewicz M, Hoffmann B, Groth-Malonek M, Szurek B, Small I, Knoop V, Lurin C (2007) A hypothesis on the identification of the editing enzyme in plant organelles. FEBS Lett 581:4132–4138

    Article  PubMed  CAS  Google Scholar 

  • Schnepf E (1994) Light and electron microscopical observations in Rhynchopus coscinodiscivorus spec. Nov., a colorless, phagotrophic Euglenozoon with concealed flagella. Arch Protistenkd 144:63–74

    Article  Google Scholar 

  • Segovia R, Pett W, Trewick S, Lavrov DV (2011) Extensive and evolutionarily persistent mitochondrial tRNA editing in velvet worms (phylum Onychophora). Mol Biol Evol 28:2873–2881

    Article  PubMed  CAS  Google Scholar 

  • Shapiro TA, Englund PT (1995) The structure and replication of kinetoplast DNA. Annu Rev Microbiol 49:117–143

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T (2015) RNA editing in plants: machinery and flexibility of site recognition. Biochim Biophys Acta 1847:779–785

    Article  PubMed  CAS  Google Scholar 

  • Škodová-Sveráková I, Verner Z, Skalický T, Votýpka J, Horváth A, Lukeš J (2015) Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol Microbiol 96:55–67

    Article  PubMed  CAS  Google Scholar 

  • Slomovic S, Fremder E, Staals RH, Pruijn GJ, Schuster G (2010) Addition of poly(a) and poly(a)-rich tails during RNA degradation in the cytoplasm of human cells. Proc Natl Acad Sci U S A 107:7407–7412

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith DR, Keeling PJ (2015) Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A 112:10177–10184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spencer DF, Gray MW (2011) Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: fragmented genes in a seemingly fragmented genome. Mol Gen Genomics 285:19–31

    Article  CAS  Google Scholar 

  • Stahley MR, Strobel SA (2006) RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis. Curr Opin Struct Biol 16:319–326

    Article  PubMed  CAS  Google Scholar 

  • Stuart K, Feagin JE (1992) Mitochondrial DNA of kinetoplastids. Int Rev Cytol 141:65–88

    Article  PubMed  CAS  Google Scholar 

  • Sun T, Bentolila S, Hanson MR (2016) The unexpected diversity of plant organelle RNA editosomes. Trends Plant Sci 21:962–973

    Article  PubMed  CAS  Google Scholar 

  • Szklarczyk R, Huynen MA (2010) Mosaic origin of the mitochondrial proteome. Proteomics 10:4012–4024

    Article  PubMed  CAS  Google Scholar 

  • Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A (2013) RNA editing in plants and its evolution. Annu Rev Genet 47:335–352

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Meineke B, Shuman S (2011) RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J Biol Chem 286:30253–30257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tashyreva D, Prokopchuk G, Yabuki A, Kaur B, Faktorová D, Votýpka J, Kusaka C, Fujikura K, Shiratori T, Ishida K, Horák A, Lukeš J (2018) Phylogeny and morphology of diplonemids from the Sea of Japan. Protist 169:158–179

    Article  PubMed  Google Scholar 

  • Tielens AGM, van Hellemond JJ (2009) Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol 25:482–490

    Article  PubMed  Google Scholar 

  • Triemer RE, Ott DW (1990) Ultrastructure of Diplonema ambulator Larsen & Patterson (Euglenozoa) and its relationship to Isonema. Eur J Protistol 25:316–320

    Article  PubMed  CAS  Google Scholar 

  • Urbaniak MD, Martin DM, Ferguson MA (2013) Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J Proteome Res 12:2233–2244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valach M, Moreira S, Kiethega GN, Burger G (2014) Trans splicing and RNA editing of LSU rRNA in Diplonema mitochondria. Nucleic Acids Res 42:2660–2672

    Article  PubMed  CAS  Google Scholar 

  • Valach M, Moreira S, Faktorová D, Lukeš J, Burger G (2016) Post-transcriptional mending of gene sequences: looking under the hood of mitochondrial gene expression in diplonemids. RNA Biol 13:1204–1211

    Article  PubMed  PubMed Central  Google Scholar 

  • Valach M, Moreira S, Hoffmann S, Stadler PF, Burger G (2017) Keeping it complicated: mitochondrial genome plasticity in diplonemids. Sci Rep 7:14166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanfleteren JR, Vierstraete AR (1999) Insertional RNA editing in metazoan mitochondria: the cytochrome b gene in the nematode Teratocephalus lirellus. RNA 5:622–624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Pena-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J (2015) Malleable mitochondrion of Trypanosoma brucei. Int Rev Cell Mol Biol 315:73–151

    Article  PubMed  Google Scholar 

  • Visomirski-Robic LM, Gott JM (1997) Insertional editing of nascent mitochondrial RNAs in Physarum. Proc Natl Acad Sci U S A 94:4324–4329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vlcek Č, Marande W, Teijeiro S, Lukeš J, Burger G (2011) Gene fragments scattered across a multi-partite mitochondrial genome. Nucleic Acids Res 39:979–988

    Article  PubMed  CAS  Google Scholar 

  • Wahlstedt H, Ohman M (2011) Site-selective versus promiscuous A-to-I editing. WIREs 2:761–771

    Article  CAS  Google Scholar 

  • Wheeler RJ, Gull K, Gluenz E (2012) Detailed interrogation of trypanosome cell biology via differential organelle staining and automated image analysis. BMC Biol 10:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yabuki A, Tame A (2015) Phylogeny and reclassification of Hemistasia phaeocysticola (Scherffel) Elbrachter & Schnepf, 1996. J Eukaryot Microbiol 62:426–429

    Article  PubMed  Google Scholar 

  • Yabuki A, Tanifuji G, Kusaka C, Takishita K, Fujikura K (2016) Hyper-eccentric structural genes in the mitochondrial genome of the algal parasite Hemistasia phaeocysticola. Genome Biol Evol:8, 2870–2878

    Google Scholar 

  • Yang J, Harding T, Kamikawa R, Simpson AGB, Roger AJ (2017) Mitochondrial genome evolution and a novel RNA editing system in deep-branching heteroloboseids. Genome Biol Evol 9:1161–1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokobori S, Pääbo S (1995) Transfer RNA editing in land snail mitochondria. Proc Natl Acad Sci U S A 92:10432–10435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yubuki N, Edgcomb VP, Bernhard JM, Leander BS (2009) Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiol 27:16

    Article  CAS  Google Scholar 

  • Yubuki N, Simpson AG, Leander BS (2013) Reconstruction of the feeding apparatus in Postgaardi mariagerensis provides evidence for character evolution within the Symbiontida (Euglenozoa). Eur J Protistol 49:32–39

    Article  PubMed  Google Scholar 

  • Zhao C, Pyle AM (2017) Structural insights into the mechanism of group II intron splicing. Trends Biochem Sci 42:470–482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zíková A, Verner Z, Nenarokova A, Michels PAM, Lukeš J (2017) A paradigm shift: the mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathog 13:e1006679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimorski V, Ku C, Martin W, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Daria Tashyreva, Galina Prokopchuk, and Anzhelika Butenko (Institute of Parasitology) for sharing unpublished data. Support from the Grant Agency of University of South Bohemia (050/2016/P to BK), the Czech Grant Agency (15-21974S and 16-18699S to JL), the ERC CZ (LL1601 to JL), the Canadian Institutes of Health Research (CIHR, MOP 70309 to GB), and from the Gordon and Betty Moore Foundation (GBMF4983.01 to GB and JL) is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Lukeš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faktorová, D., Valach, M., Kaur, B., Burger, G., Lukeš, J. (2018). Mitochondrial RNA Editing and Processing in Diplonemid Protists. In: Cruz-Reyes, J., Gray, M. (eds) RNA Metabolism in Mitochondria. Nucleic Acids and Molecular Biology, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-319-78190-7_6

Download citation

Publish with us

Policies and ethics