Advertisement

MDS Preference Analysis

  • Cody S. Ding
Chapter

Abstract

Discuss the fundamental concepts of MDS preference analysis. An example of real data is provided to illustrate interpretation of the results. Single-ideal point MDS analysis is also explained.

Keywords

Preference model Vector representation Ideal-point Single-ideal point 

References

  1. Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345–370.MathSciNetCrossRefGoogle Scholar
  2. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). New York: Springer.zbMATHGoogle Scholar
  3. Busing, F. M. T. A., Groenen, P. J. K., & Heiser, W. J. (2005a). Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation. Psychometrika, 70(1), 71–98.MathSciNetCrossRefGoogle Scholar
  4. Busing, F. M. T. A., Heiser, W. J., Neufeglise, P., & Meulman, J. J. (2005b). PREFSCAL: Program for metric and nonmetric multidimensional unfolding, including individual differences modeling and fixed coordinates (version 14). Chicago, IL: SPSS Inc.. Retrieved from http://publib.boulder.ibm.com/infocenter/spssstat/v20r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Fsyn_prefscal.htm.Google Scholar
  5. Coombs, C. H. (1950). Psychological scaling without a unit of measurement. Psychological Review, 57(3), 145–158.CrossRefGoogle Scholar
  6. Coombs, C. H. (1964). A theory of data. New York: Wiley.Google Scholar
  7. DeSarbo, W. S., Young, M. R., & Rangaswamy, A. (1997). A parametric multidimensional unfolding procedure for incomplete nonmetric preference/choice set data. Marketing Research, 34(4), 499–516.CrossRefGoogle Scholar
  8. Hefner, R. (1958). Extensions to the law of comparative judgment to discriminable and multidimensional stimuli. Unpublished Ph.D. dissertation, University of Michigan.Google Scholar
  9. MacKay, D. B. (1989). Probabilistic multidimensional scaling: An anisotropic model for distance judgments. Journal of Mathematical Psychology, 33, 187–205.MathSciNetCrossRefGoogle Scholar
  10. MacKay, D. B. (2001). Probabilistic unfolding models for sensory data. Journal of Food and Preference, 12, 427–436.CrossRefGoogle Scholar
  11. MacKay, D. B. (2007). Internal multidimensional unfolding about a single ideal: A probabilistic solution. Journal of Mathematical Psychology, 51, 305–318.MathSciNetCrossRefGoogle Scholar
  12. MacKay, D. B., & Zinnes, J. L. (1986). A probabilistic model for the multidimensional scaling of proximity and preference data. Marketing Science, 5, 325–344.CrossRefGoogle Scholar
  13. MacKay, D. B., & Zinnes, J. (2014). PROSCAL professional: A program for probabilistic scaling: www.proscal.com
  14. MacKay, D. B., Easley, R. F., & Zinnes, J. L. (1995). A single ideal point model for market structure analysis (pp. 433–443). XXXII: Journal of Marketing Research.Google Scholar
  15. Scheier, M. F., Carver, C. S., & Bridges, M. W. (1994). Distinguishing optimism from neuroticism (and trait anxiety, self-mastery, and self-esteem): A re-evaluation of the life orientation test. Journal of Personality and Social Psychology, 67, 1063–1078.CrossRefGoogle Scholar
  16. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.MathSciNetCrossRefGoogle Scholar
  17. Shepard, R. N. (1974). Representation of structure in similarity data: Problems and prospects. Psychometrika, 39, 373–421.MathSciNetCrossRefGoogle Scholar
  18. Thurstone, L. L. (1928). Attitudes can be measured. American Journal of Sociology, 33, 529–554.CrossRefGoogle Scholar
  19. Zinnes, J. L., & MacKay, D. B. (1983). Probabilistic multidimensional scaling: Complete and incomplete data. Psychometrika, 48, 24–48.CrossRefGoogle Scholar
  20. Zinnes, J. L., & MacKay, D. B. (1992). A probabilistic multidimensional scaling approach: Properties and procedures. In F. G. Ashby (Ed.), Multidimensional models of perception and cognition (pp. 35–60). Hillsdale: Lawrence Erlbaum Associates.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cody S. Ding
    • 1
    • 2
  1. 1.Department of Education Science and Professional ProgramUniversity of Missouri-St. LouisSt. LouisUSA
  2. 2.Center for NeurodynamicsUniversity of Missouri-St. LouisSt. LouisUSA

Personalised recommendations